Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Solutions and Substrates
2.3. Moulding
2.4. Pyranine Staining and Extraction
2.5. Characterisation
3. Results and Discussion
3.1. Grafting Reaction
3.2. Adsorption of PdCl2
3.3. Adsorption and Desorption of Anionic Dye
3.4. Behaviour in Alkaline Medium
3.4.1. Extraction in Alkaline Medium
3.4.2. Stability of Grafting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, A.; Pandey, L.M. Review: Polymers, Surface-Modified Polymers, and Self Assembled Monolayers as Surface-Modifying Agents for Biomaterials. Polym.-Plast. Technol. Eng. 2015, 54, 1358–1378. [Google Scholar] [CrossRef]
- Hoffman, A. Surface Modification of Polymers. Chin. J. Polym. Sci. 1995, 13, 195–203. [Google Scholar]
- Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers 2014, 6, 2309–2331. [Google Scholar] [CrossRef]
- Gao, W.; Han, X.; Li, Y.; Zhou, Z.; Wang, J.; Shi, R.; Jiao, J.; Qi, Y.; Zhou, Y.; Zhao, J. Modification Strategies for Improving Antibacterial Properties of Polyetheretherketone. J. Appl. Polym. Sci. 2022, 139, e52847. [Google Scholar] [CrossRef]
- Moad, G. The Synthesis of Polyolefin Graft Copolymers by Reactive Extrusion. Prog. Polym. Sci. 1999, 24, 81–142. [Google Scholar] [CrossRef]
- Ratzsch, M.; Arnold, M.; Borsig, E.; Bucka, H.; Reichelt, N. Radical Reactions on Polypropylene in the Solid State. Prog. Polym. Sci. 2002, 27, 1195–1282. [Google Scholar] [CrossRef]
- Foerster, F. Atmospheric Pressure Plasma in Industrial Applications: Surface Treatment of Thermally Sensitive Polymers. Plasma Process. Polym. 2022, 19, e2100240. [Google Scholar] [CrossRef]
- Siow, K.S.; Britcher, L.; Kumar, S.; Griesser, H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Arpagaus, C.; Oberbossel, G.; von Rohr, P.R. Plasma Treatment of Polymer Powders—from Laboratory Research to Industrial Application. Plasma Process. Polym. 2018, 15, e1800133. [Google Scholar] [CrossRef]
- Tengsuthiwat, J.; Sanjay, M.R.; Siengchin, S.; Pruncu, C. 3D-MID Technology for Surface Modification of Polymer-Based Composites: A Comprehensive Review. Polymers 2020, 12, 1408. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(Lactic Acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Pillai, R.R.; Thomas, V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers 2023, 15, 400. [Google Scholar] [CrossRef]
- Omran, A.V.; Baitukha, A.; Pulpytel, J.; Sohbatzadeh, F.; Arefi-Khonsari, F. Atmospheric Pressure Surface Modification and Cross-Linking of UHMWPE Film and inside HDPE Tube by Transporting Discharge. Plasma Process. Polym. 2018, 15, e1700145. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Process. Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Feng, C.; Matsuura, T. The Art of Surface Modification of Synthetic Polymeric Membranes. J. Appl. Polym. Sci. 2010, 115, 855–895. [Google Scholar] [CrossRef]
- Friedrich, J. Mechanisms of Plasma Polymerization—Reviewed from a Chemical Point of View. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar] [CrossRef]
- Grundmeier, G.; von Keudell, A.; de los Arcos, T. Fundamentals and Applications of Reflection FTIR Spectroscopy for the Analysis of Plasma Processes at Materials Interfaces. Plasma Process. Polym. 2015, 12, 926–940. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.-D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process, 1 Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces. Makromolekulare Chemie. Macromol. Symp. 1991, 46, 321–327. [Google Scholar] [CrossRef]
- Witt, M.A.; Valenga, F.; Blell, R.; Dotto, M.E.R.; Bechtold, I.H.; Felix, O.; Pires, A.T.N.; Decher, G. Layer-by-Layer Assembled Films Composed of “Charge Matched” and “Length Matched” Polysaccharides: Self-Patterning and Unexpected Effects of the Degree of Polymerization. Biointerphases 2012, 7, 64. [Google Scholar] [CrossRef]
- Gill, R.; Mazhar, M.; Felix, O.; Decher, G. Covalent Layer-by-Layer Assembly and Solvent Memory of Multilayer Films from Homobifunctional Poly(Dimethylsiloxane). Angew. Chem.-Int. Edit. 2010, 49, 6116–6119. [Google Scholar] [CrossRef]
- Petzold, G.; Schwarz, S.; Dutschk, V. Polyelectrolyte-Surfactant Complexes and Their Influence on the Wettability of Different Polymer Surfaces. Colloid Polym. Sci. 2014, 292, 2197–2205. [Google Scholar] [CrossRef]
- Galvin, C.J.; Genzer, J. Applications of Surface-Grafted Macromolecules Derived from Post-Polymerization Modification Reactions. Prog. Polym. Sci. 2012, 37, 871–906. [Google Scholar] [CrossRef]
- Jo, H.; Theato, P. Post-Polymerization Modification of Surface-Bound Polymers. In Controlled Radical Polymerization at and from Solid Surfaces; Vana, P., Ed.; Springer-Verlag Berlin: Berlin, Germany, 2016; Volume 270, pp. 163–192. ISBN 978-3-319-22138-0. [Google Scholar]
- Henze, M.; Maedge, D.; Prucker, O.; Ruehe, J. “Grafting Through”: Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules 2014, 47, 2929–2937. [Google Scholar] [CrossRef]
- Prucker, O.; Ruhe, J. Synthesis of Poly(Styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators. Macromolecules 1998, 31, 592–601. [Google Scholar] [CrossRef]
- Ruhe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Grohn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; et al. Polyelectrolyte Brushes. In Polyelectrolytes with Defined Molecular Architecture I; Schmidt, M., Ed.; Springer-Verlag Berlin: Berlin, Germany, 2004; Volume 165, pp. 79–150. ISBN 978-3-540-00528-5. [Google Scholar]
- Ruhe, J. Polymers Grafted from Solid Surfaces. Macromol. Symp. 1998, 126, 215–222. [Google Scholar] [CrossRef]
- Edmondson, S.; Osborne, V.L.; Huck, W.T.S. Polymer Brushes via Surface-Initiated Polymerizations. Chem. Soc. Rev. 2004, 33, 14–22. [Google Scholar] [CrossRef]
- Zdyrko, B.; Luzinov, I. Polymer Brushes by the “Grafting to” Method. Macromol. Rapid Commun. 2011, 32, 859–869. [Google Scholar] [CrossRef]
- Varvarenko, S.; Samaryk, V.; Nosova, N.; Puzko, N.; Taras, R.; Tarnavchyk, I.; Voronov, A.; Kohut, A.; Voronov, S. Prediction of Interfacial Interactions between Polymer Layers. In Proceedings of the Polychar-18 World Forum on Advanced Materials; Mormann, W., Ed.; Wiley-V C H Verlag Gmbh: Weinheim, Germany, 2010; Volume 298. [Google Scholar]
- Zhao, B.; Brittain, W.J. Polymer Brushes: Surface-Immobilized Macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Moulay, S. Functionalized Polystyrene and Polystyrene-Containing Material Platforms for Various Applications. Polym.-Plast. Technol. Eng. 2018, 57, 1045–1092. [Google Scholar] [CrossRef]
- Kabanov, V. Radiation-Induced Graft-Polymerization as a Method for Surface Modification of Polymers. Vysokomol. Soedin. 1995, 37, 1107–1120. [Google Scholar]
- Wang, J.; Chen, H. Macromolecular Modification Strategies for Biomaterial Surface: Challenges in Fundamental Research and Applications. Macromolecules 2023. [Google Scholar] [CrossRef]
- Akimoto, A.M.; Ohta, Y.; Koizumi, Y.; Ishii, T.; Endo, M.; Enomoto, T.; Nishimoto, T.; Yoshida, R. A Surface-Grafted Hydrogel Demonstrating Thermoresponsive Adhesive Strength Change. Soft Matter 2023, 19, 3249–3252. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Uchida, E.; Kang, E.T.; Uyama, Y.; Ikada, Y. Polymer Surface with Graft Chains. Prog. Polym. Sci. 2003, 28, 209–259. [Google Scholar] [CrossRef]
- Park, H.; Wiesing, M.; Zimmermann, P.; Janke, A.; Schwarz, S.; Nagel, J. Laser-Assisted Direct Grafting of Poly(Ethyleneimine) on Poly(Methyl Methacrylate). Polymers 2022, 14, 2041. [Google Scholar] [CrossRef] [PubMed]
- Nasef, M.M.; Gupta, B.; Shameli, K.; Verma, C.; Ali, R.R.; Ting, T.M. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers 2021, 13, 3102. [Google Scholar] [CrossRef]
- Nagel, J.; Brauer, M.; Hupfer, B.; Grundke, K.; Schwarz, S.; Lehmann, D. Investigations on the Reactive Surface Modification of Polycarbonate by Surface-Reactive Injection Molding. J. Appl. Polym. Sci. 2004, 93, 1186–1191. [Google Scholar] [CrossRef]
- Nagel, J.; Zimmermann, P.; Schubert, O.; Simon, F.; Schlenstedt, K. Coupling of Carboxylic Groups onto the Surface of Polystyrene Parts during Fused Filament Fabrication. Appl. Surf. Sci. 2017, 422, 28–31. [Google Scholar] [CrossRef]
- Nagel, J.; Zimmermann, P.; Schwarz, S.; Schlenstedt, K. Selective Grafting of Polyamines to Polyether Ether Ketone Surface during Molding and Its Use for Chemical Plating. Coatings 2018, 8, 333. [Google Scholar] [CrossRef]
- Nagel, J.; Heinrich, G. Temperature Transitions on the Surface of a Thermoplastic Melt during Injection Moulding and Its Use for Chemical Reactions. Int. J. Heat Mass Transf. 2012, 55, 6890–6896. [Google Scholar] [CrossRef]
- Deutsch, H.; Binder, K. Interdiffusion and Self-Diffusion in Polymer Mixtures—A Monte-Carlo Study. J. Chem. Phys. 1991, 94, 2294–2304. [Google Scholar] [CrossRef]
- He, X.H.; Nagel, J.; Lehmann, D.; Heinrich, G. Interface Structure between Immiscible Reactive Polymers under Transreaction: A Monte Carlo Simulation. Macromol. Theory Simul. 2005, 14, 305–311. [Google Scholar] [CrossRef]
- Zimmermann, P.; Schlenstedt, K.; Schwarz, S.; Vehlow, D.; Blanke, M.; Fery, A.; Nagel, J. Green Approach for Manufacturing of Polymer Surface Structures with Microcavities Having Robust Chemically Functionalized Inner Surfaces. ACS Appl. Polym. Mater. 2022, 4, 5189–5198. [Google Scholar] [CrossRef]
- Fakirov, S. (Ed.) Transreactions in Condensation Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Briggs, D.; Beamson, G. XPS of Polymers Database; SurfaceSpectra Ltd.: Manchester, UK, 2000; ISBN 0-9537848-4-3. [Google Scholar]
- de Lange, P.J.; Akker, P.G.; Maas, A.J.H.; Knoester, A.; Brongersma, H.H. Adhesion Activation of Twaron® Aramid Fibres Studied with Low-Energy Ion Scattering and x-Ray Photoelectron Spectroscopy. Surf. Interface Anal. 2001, 31, 1079–1084. [Google Scholar] [CrossRef]
- Jin, H.; Yang, J.; Jun-Feng, Z.; Wei-Jiang, H. Intermolecular Interaction between Pd-II Complex of 2-(Bis(2-aminoethyl)amino)ethanol and Met, His or Cys-containing Peptides. Chin. J. Inorg. Chem. 2009, 25, 2105–2112. [Google Scholar]
- Ribaudo, F.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Phosphorus Functionalized Dendrimers and Hyperbranched Polymers: Is There a Need for Perfect Dendrimers in Catalysis? Isr. J. Chem. 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.-A.; Dragan, E.S. Cross-Linked Multilayer Films Deposited onto Silica Microparticles with Tunable Selectivity for Anionic Dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 53–60. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Taniguchi, M.; Du, H. PhotochemCAD 1998–2023. Available online: https://photochemcad.com/databases/common-compounds/polycyclic-aromatic-hydrocarbons/pyranine (accessed on 16 October 2023).
MW(PEI)/ kg mol−1 | Sputter Time/s | C | O | N | Cl | d(PEI)/nm | ||||
---|---|---|---|---|---|---|---|---|---|---|
at% | STD/% | at% | STD/% | at% | STD/% | at% | STD/% | |||
2 | 0 | 69.5 | 0.4 | 23.9 | 0.3 | 6.4 | 0.3 | 0.19 | 0.05 | 0.6 |
3 | 71.7 | 0.4 | 24.8 | 0.4 | 3.5 | 0.3 | 0.12 | 0.05 | ||
6 | 72.4 | 0.4 | 24.3 | 0.3 | 3.2 | 0.3 | 0.03 | 0.05 | ||
9 | 71.8 | 0.4 | 25.6 | 0.4 | 2.6 | 0.3 | 0.02 | 0.05 | ||
25 | 0 | 65.7 | 0.2 | 15.1 | 0.2 | 16.3 | 0.2 | 2.92 | 0.05 | 2.0 |
750 | 0 | 65.8 | 0.2 | 10.5 | 0.2 | 23.5 | 0.2 | 0.16 | 0.02 | 3.7 |
Name | Carbon | Oxygen | Chlorine | Palladium | Titan |
---|---|---|---|---|---|
Symbol | C | O | Cl | Pd | Ti |
Colour | - | ||||
Atomic Concentration | 73.857 | 21.673 | 3.022 | 1.231 | 0.217 |
Mapping graph | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, P.; Frohs, S.; Wiesing, M.; Meena, K.; Nagel, J. Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding. Polymers 2024, 16, 644. https://doi.org/10.3390/polym16050644
Zimmermann P, Frohs S, Wiesing M, Meena K, Nagel J. Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding. Polymers. 2024; 16(5):644. https://doi.org/10.3390/polym16050644
Chicago/Turabian StyleZimmermann, Philipp, Silven Frohs, Martin Wiesing, Kamal Meena, and Jürgen Nagel. 2024. "Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding" Polymers 16, no. 5: 644. https://doi.org/10.3390/polym16050644
APA StyleZimmermann, P., Frohs, S., Wiesing, M., Meena, K., & Nagel, J. (2024). Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding. Polymers, 16(5), 644. https://doi.org/10.3390/polym16050644