Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Preparation of SF
2.3. Preparation of Fibers
2.4. Characterization
2.5. Antibacterial Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fibers Characterization
3.2. Antibacterial Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, S.H.; Dong, T.; Li, Y.R.; Sun, M.C.; Qi, Y.; Liu, J.; Kuss, M.A.; Chen, S.J.; Duan, B. State-of-the-art review of advanced electrospun nanofib er yarn-base d textiles for biomedical applications. Appl. Mater. Today 2022, 27, 101473. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Vilanova, A.; Alonso, Y.; Dietvorst, J.; Pérez-Montero, M.; Rodríguez-Rodríguez, R.; Ivanova, K.; Tzanov, T.; Vigués, N.; Mas, J.; Guirado, G.; et al. Sonochemical coating of Prussian Blue for the production of smart bacterial-sensing hospital textiles. Ultrason. Sonochem. 2021, 70, 105317. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.Y.; Guo, J.H.; Zhao, Y.J. Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing. Research 2023, 6, 0129. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T.; Tan, S.-A.; Vuppaladadium, S.S.R.; Sajja, T.; Maiti, T.K. Commercially Available Textiles as a Scaffolding Platform for Large-Scale Cell Culture. Int. J. Biomater. 2023, 2023, 2227509. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, X.; Lu, W.P.; Wang, J.; Xu, Y.S.; Guo, Y.C. Application of Electrospinning in Antibacterial Field. Nanomaterials 2021, 11, 1822. [Google Scholar] [CrossRef]
- Ji, G.J.; Chen, Z.; Li, H.; Awuye, D.E.; Guan, M.D.; Zhu, Y.B. Electrospinning-Based Biosensors for Health Monitoring. Biosensors 2022, 12, 876. [Google Scholar] [CrossRef]
- Karbowniczek, J.E.; Berniak, K.; Knapczyk-Korczak, J.; Williams, G.; Bryant, J.A.; Nikoi, N.D.; Banzhaf, M.; de Cogan, F.; Stachewicz, U. Strategies of nanoparticles integration in polymer fibers to achieve antibacterial effect and enhance cell proliferation with collagen production in tissue engineering scaffolds. J. Colloid Interface Sci. 2023, 650, 1371–1381. [Google Scholar] [CrossRef]
- Mishra, R.K.; Verma, K.; Chaudhary, R.G.; Lambat, T.; Joseph, K. An efficient fabrication of polypropylene hybrid nanocomposites using carbon nanotubes and PET fibrils. Mater. Today-Proc. 2020, 29, 794–800. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mishra, P.; Verma, K.; Mondal, A.; Chaudhary, R.G.; Abolhasani, M.M.; Loganathan, S. Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 2019, 17, 767–800. [Google Scholar] [CrossRef]
- Deineka, V.; Sulaieva, O.; Pernakov, N.; Radwan-Praglowska, J.; Janus, L.; Korniienko, V.; Husak, Y.; Yanovska, A.; Liubchak, I.; Yusupova, A.; et al. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 120, 111740. [Google Scholar] [CrossRef]
- MBazbouz, B.; Taylor, M.; Baker, D.; Ries, M.E.; Goswami, P. Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids. J. Appl. Polym. Sci. 2019, 136, 47153. [Google Scholar] [CrossRef]
- Arumugam, M.; Murugesan, B.; Pandiyan, N.; Chinnalagu, D.K.; Rangasamy, G.; Mahalingam, S. Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 123, 112019. [Google Scholar] [CrossRef]
- Foroushani, P.H.; Rahmani, E.; Alemzadeh, I.; Vossoughi, M.; Pourmadadi, M.; Rahdar, A.; Díez-Pascual, A.M. Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing. Nanomaterials 2022, 12, 3426. [Google Scholar] [CrossRef]
- Khalek, M.A.A.; Gaber, S.A.A.; El-Domany, R.A.; El-Kemary, M.A. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ ciprofloxacin nanofibers for chronic wound healing. Int. J. Biol. Macromol. 2021, 193, 1752–1766. [Google Scholar] [CrossRef]
- Yousaf, M.; Raza, Z.A.; Aslam, M.; Rehman, M.S.U. Development and Characterization of Nanosilver-Mediated Electrospun Silk Fibers. J. Nat. Fibers 2022, 19, 13901–13913. [Google Scholar] [CrossRef]
- El Fawal, G.; Abu-Serie, M.M.; Mo, X.M.; Wang, H.S. Diethyldithiocarbamate/silk fibroin/polyethylene oxide nanofibrous for cancer therapy: Fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 2021, 193, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Zhang, L.X.; Ding, X.B.; Liu, T.; Qiu, Q.H.; Jiang, Z.X. Electrospun silk fibroin/polyethylene oxide composite scaffolds with strontium or copper-doped hollow bioactive glass nanospheres for pH-triggered sustained drug release. Mater. Lett. 2023, 336, 133881. [Google Scholar] [CrossRef]
- Lan, D.W.; Liu, Z.L.; Zhou, J.L.; Xu, M.T.; Li, Z.; Dai, F.Y. Preparation and characterization of silk fibroin/polyethylene oxide nanofiber membranes with antibacterial activity. J. Biomed. Mater. Res. Part A 2021, 110, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Abdullah, C.A.C.; Ahmad, S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef] [PubMed]
- Algotiml, R.; Gab-Alla, A.; Seoudi, R.; Abulreesh, H.H.; El-Readi, M.Z.; Elbanna, K. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci. Rep. 2022, 12, 2421. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Q.; Li, H.; Fei, X.; Peng, L.C. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym. 2021, 252, 117156. [Google Scholar] [CrossRef]
- Karagoz, S.; Kiremitler, N.B.; Sarp, G.; Pekdemir, S.; Salem, S.; Goksu, A.G.; Onses, M.S.; Sozdutmaz, I.; Sahmetlioglu, E.; Ozkara, E.S.; et al. Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Appl. Mater. Interfaces 2021, 13, 5678–5690. [Google Scholar] [CrossRef]
- Zhang, X.B.; Hu, Y.P.; Yang, W.; Feng, M.B. Ag-loaded and Pd-loaded ZnO nanofiber membranes: Preparation via electrospinning and application in photocatalytic antibacterial and dye degradation. Appl. Nanosci. 2021, 13, 1495–1506. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Naghashzargar, E.; Moghaddam, M.K.; Khorshidi, R. Production of PLA fibers with surface modifications and silver nanoparticle coating to impart antibacterial activity. Polym. Bull. 2023. [Google Scholar] [CrossRef]
- Magalhaes, F.D.; Cardoso, V.L.; Reis, M.H.M. Incorporation of silver nanoparticles in a kaolin hollow fiber membrane for efficient removal of Enterobacter cloacae and Escherichia coli from aqueous solutions. Mater. Chem. Phys. 2022, 287, 126279. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, A.; Benjakul, S.; Prodpran, T.; Nilsuwan, K.; Huda, N.; de la Caba, K. Composite films based on chitosan and epigallocatechin gallate grafted chitosan: Characterization, antioxidant and antimicrobial activities. Food Hydrocoll. 2021, 111, 106384. [Google Scholar] [CrossRef]
- Li, J.H.; Fu, J.; Tian, X.; Hua, T.; Poon, T.; Koo, M.; Chan, W. Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydr. Polym. 2022, 280, 119031. [Google Scholar] [CrossRef]
- Murillo, L.; Rivero, P.J.; Sandúa, X.; Pérez, G.; Palacio, J.F.; Rodríguez, R.J. Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles. Polymers 2023, 15, 3700. [Google Scholar] [CrossRef] [PubMed]
- Wardhani, R.A.K.; Primadona, I.; Hardiansyah, A. Electrospun α-mangosteen-chitosan-poly(ethylene oxide) nanofibers. Mater. Res. Express 2022, 9, 115005. [Google Scholar] [CrossRef]
- Chen, M.P.; Ma, C.; Zhou, C.E.; Li, Z.G.; Li, R. Preparation and Properties of Water-Resistant Antibacterial Curcumin/Silver Composite Nanofiber. Fiber. Polym. 2023, 24, 3821–3832. [Google Scholar] [CrossRef]
- Ahmed, H.B.; Emam, H.E.; Mashaly, H.M.; Rehan, M. Nanosilver leverage on reactive dyeing of cellulose fibers: Color shading, color fastness and biocidal potentials. Carbohydr. Polym. 2018, 186, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Gök, Z.G.; Günay, K.; Arslan, M.; Yigitoglu, M.; Vargel, I. Coating of modified poly(ethylene terephthalate) fibers with sericin-capped silver nanoparticles for antimicrobial application. Polym. Bull. 2020, 77, 1649–1665. [Google Scholar] [CrossRef]
- He, M.; Chen, M.; Dou, Y.; Ding, J.; Yue, H.B.; Yin, G.Q.; Chen, X.J.; Cui, Y.D. Electrospun Silver Nanoparticles-Embedded Feather Keratin/Poly(vinyl alcohol)/Poly(ethylene oxide) Antibacterial Composite Nanofibers. Polymers 2020, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.R.; Kimmerling, E.P.; Silva, C.; Rodrigues, F.J.; Leonor, I.B.; Reis, R.L.; Kaplan, D.L. Silk-Based Antimicrobial Polymers as a New Platform to Design Drug-Free Materials to Impede Microbial Infections. Macromol. Biosci. 2018, 18, 1800262. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, D.; Thatikonda, N.; Nilebäck, L.; Widhe, M.; Hedhammar, M.; Mandal, B.B. Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts. ACS Appl. Mater. Interfaces 2018, 10, 23560–23572. [Google Scholar] [CrossRef]
- Hu, W.K.; Wang, Z.J.; Xu, Y.; Wang, X.H.; Xiao, Y.; Zhang, S.M.; Wang, J.L. Remodeling of inherent antimicrobial nanofiber dressings with melamine-modified fibroin into neoskin. J. Mater. Chem. B 2019, 7, 3412–3423. [Google Scholar] [CrossRef]
- Qian, Z.Y.; Bai, Y.T.; Zhou, J.; Li, L.H.; Na, J.; Fan, Y.B.; Guo, X.M.; Liu, H.F. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J. Mater. Chem. B 2020, 8, 7197–7212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Gong, H.; Jia, X.; Wang, R.; Liu, Z.; Zhang, L.; Li, J.; Jiao, T. Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application. Polymers 2024, 16, 648. https://doi.org/10.3390/polym16050648
Li Q, Gong H, Jia X, Wang R, Liu Z, Zhang L, Li J, Jiao T. Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application. Polymers. 2024; 16(5):648. https://doi.org/10.3390/polym16050648
Chicago/Turabian StyleLi, Qing, Hongyu Gong, Xiang Jia, Ran Wang, Zhiwei Liu, Lexin Zhang, Jisheng Li, and Tifeng Jiao. 2024. "Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application" Polymers 16, no. 5: 648. https://doi.org/10.3390/polym16050648
APA StyleLi, Q., Gong, H., Jia, X., Wang, R., Liu, Z., Zhang, L., Li, J., & Jiao, T. (2024). Electrospinning Silk-Fibroin-Based Fibrous Membranes with AgNPs for Antimicrobial Application. Polymers, 16(5), 648. https://doi.org/10.3390/polym16050648