Techno-Environmental Evaluation of Alkaline Treatment in Flax Reinforced Thermoplastics
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Alkaline Treatment and Composite Manufacturing
2.3. Tensile Testing
2.4. Life Cycle Assessment
3. Results and Discussion
3.1. Tensile Characterization
3.2. Life Cycle Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, A.; Misra, M.; Drzal, L.; Selke, S.; Harte, B.; Hinrichsen, G. Natural Fibers, Biopolymers, and Biocomposites: An Introduction. In Natural Fibres, Biopolymers, and Biocomposites, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon-on-Thames, UK, 2005; pp. 1–36. [Google Scholar]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Periyasamy, D.; Manoharan, B.; Sahayaraj Arockiasamy, F.; Aravind, D.; Senthilkumar, K.; Rajini, N.; Muhammed, F.; Al-lohedan, H. Exploring the Recycling Potential of HDPE Films Reinforced with Flax Fiber for Making Sustainable Decorative Files. J. Mater. Res. Technol. 2023, 25, 2049–2060. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter & Co.: Berlin, Germany, 1983. [Google Scholar]
- Valadez-Gonzalez, A.; Cervantes-Uc, J.; Olayo, R.; Herrera-Franco, P. Effect of Fiber Surface Treatment on the Fiber–Matrix Bond Strength of Natural Fiber Reinforced Composites. Compos. Part B Eng. 1999, 30, 309–320. [Google Scholar] [CrossRef]
- Nayak, S.; Heckadka, S.; Seth, A.; Prabhu, S.; Sharma, R.; Shenoy, K. Effect of Chemical Treatment on the Physical and Mechanical Properties of Flax Fibers: A Comparative Assessment. Mater. Today Proc. 2021, 38, 2406–2410. [Google Scholar] [CrossRef]
- Konda, A.; El-dessouky, H. Effect of Maleic-Anhydride Grafting on the Properties of Flax Reinforced Polypropylene Textile Composites. J. Text. Sci. Technol. 2019, 5, 69–85. [Google Scholar]
- Fathi, B.; Foruzanmehr, M.; Elkoun, S.; Robert, M. Novel Approach for Silane Treatment of Flax Fiber to Improve the Interfacial Adhesion in Flax/Bio Epoxy Composites. J. Compos. Mater. 2019, 53, 2229–2238. [Google Scholar] [CrossRef]
- Vattathurvalappil, S.; Theravalappil, R.; Aravind, A.; Kumar, A.; Ali, U. Two Step Chemical Treatment on Flax Fibers for Enhanced Interfacial Adhesion and Moisture Repulsion. In Proceedings of the American Society for Composites-Thirty-Eighth Technical Conference, Boston, MA, USA, 17–20 September 2023. [Google Scholar] [CrossRef]
- Huner, U. Effect of Chemical Surface Treatment on Flax-Reinforced Epoxy Composite. J. Nat. Fibers 2018, 15, 808–821. [Google Scholar] [CrossRef]
- Mohit, S.; Gaurav, D. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt. J. Pet. 2018, 27, 775–783. [Google Scholar] [CrossRef]
- Rosselot, K.; Allen, D. Life Cycle Concepts, Product Stewardship and Green Engineering. In Green Engineering: Environmentally Conscious Design of Chemical Processes; Allen, D., Shonnard, R., Eds.; Prentice-Hall: Englewood Cliffs, NM, USA, 2003. [Google Scholar]
- ISO 14040; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Standard Organization: Geneva, Switzerland, 2006.
- Rubin, R.S.; de Castro, M.A.S.; Brandão, D.; Schalch, V.; Ometto, A.R. Utilization of Life Cycle Assessment Methodology to Compare Two Strategies for Recovery of Copper from Printed Circuit Board Scrap. J. Clean. Prod. 2014, 64, 297–305. [Google Scholar] [CrossRef]
- Fitzgerald, A.; Proud, W.; Kandemir, A.; Murphy, R.J.; Jesson, D.A.; Trask, R.S.; Hamerton, I.; Longana, M.L. A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. Sustainability 2021, 13, 1160. [Google Scholar] [CrossRef]
- ASTM Standard D638-22; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Saha, P.; Manna, S.; Chowdhury, R.; Sen, R.; Roy, D.; Adhikari, B. Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment. Bioresour. Technol. 2010, 101, 3182–3187. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Investigation of the Dislocation of Natural Fibres by Fourier-Transform Infrared Spectroscopy. Vib. Spectrosc. 2011, 55, 300–306. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. Recipe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2016, 22, 138–147. [Google Scholar] [CrossRef]
Material/Process | Amount | Amount | SimaPro Material/Energy |
---|---|---|---|
Without NaOH | With NaOH | ||
HDPE | 0.042 kg | 0.042 kg | HPolyethylene, high density, granulate {GLO}|market for|APOS, S |
Flax fibers | 0.007 kg | 0.007 kg | Fiber, flax {GLO}|market for fiber, flax|APOS, S |
Sodium Hydroxide | 0 | 10 mL | Sodium hydroxide, without water, in 50% solution state {GLO}|market for|APOS, S |
Distilled water | 0 | 3190 mL | Water, ultrapure {RoW}|market for water, ultrapure|APOS, S |
Acetic Acid | 0 | 10 mL | Acetic acid, without water, in 98% solution state {GLO}|market for|APOS, S |
Plastic bag LDPE | 0.0049 kg | 0.0049 kg | LPolyethylene, low density, granulate {GLO}|market for|APOS, S |
Chiller | 1.187 kWh | 1.187 kWh | CElectricity, high voltage {SA}|market for|APOS, S |
Molding machine | 2.33 kWh | 2.33 kWh | MMElectricity, high voltage {SA}|market for|APOS, S |
Curing Oven | 2 kWh | 2 kWh | OElectricity, high voltage {SA}|market for|APOS, S |
Impact Category | Symbol | Unit | Impact Value | Impact Value | %Age Difference |
---|---|---|---|---|---|
Without NaOH | With NaOH | ||||
Global warming | GW | kg CO2 eq | 5.745301679 | 5.811651 | 1.154844052 |
Stratospheric ozone depletion | OD | kg CFC-11 eq | 3.60226 × 10−6 | 3.66 × 10−6 | 1.554498712 |
Ionizing radiation | IR | kBq Co-60 eq | 0.036829709 | 0.043014 | 16.79235882 |
Ozone formation, human health | OFH | kg NOx eq | 0.014643984 | 0.014807 | 1.111626293 |
Fine particulate matter formation | FPMF | kg PM2.5 eq | 0.008458484 | 0.008598 | 1.645062915 |
Ozone formation, terrestrial ecosystems | OFT | kg NOx eq | 0.014874519 | 0.015041 | 1.122139711 |
Terrestrial acidification | TA | kg SO2 eq | 0.026735514 | 0.026978 | 0.907838854 |
Freshwater eutrophication | FE | kg P eq | 9.44553 × 10−5 | 0.000267 | 182.495852 |
Marine eutrophication | ME | kg N eq | 4.6778 × 10−5 | 6.94 × 10−5 | 48.34430937 |
Terrestrial ecotoxicity | TE | kg 1,4-DCB | 14.77473319 | 14.98223 | 1.404388223 |
Freshwater ecotoxicity | FET | kg 1,4-DCB | 0.02487353 | 0.028535 | 14.71901664 |
Marine ecotoxicity | MET | kg 1,4-DCB | 0.042774812 | 0.047546 | 11.15483648 |
Human carcinogenic toxicity | HCT | kg 1,4-DCB | 0.028180178 | 0.031875 | 13.11203442 |
Human non-carcinogenic toxicity | HCNT | kg 1,4-DCB | 0.561270601 | 0.635217 | 13.17479091 |
Land use | LU | m2a crop eq | 1.033990998 | 1.043837 | 0.952260482 |
Mineral resource scarcity | MRS | kg Cu eq | 0.002061313 | 0.002317 | 12.40111921 |
Fossil resource scarcity | FRS | kg oil eq | 1.866914949 | 1.889315 | 1.199826782 |
Water consumption | WC | m3 | 0.012643242 | 0.017524 | 38.6022898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vattathurvalappil, S.H.; Shaukat, M.M.; Theravalappil, R.; Shuja, S.Z.; Abdelrahman, W.G. Techno-Environmental Evaluation of Alkaline Treatment in Flax Reinforced Thermoplastics. Polymers 2024, 16, 662. https://doi.org/10.3390/polym16050662
Vattathurvalappil SH, Shaukat MM, Theravalappil R, Shuja SZ, Abdelrahman WG. Techno-Environmental Evaluation of Alkaline Treatment in Flax Reinforced Thermoplastics. Polymers. 2024; 16(5):662. https://doi.org/10.3390/polym16050662
Chicago/Turabian StyleVattathurvalappil, Suhail Hyder, Mian Mobeen Shaukat, Rajesh Theravalappil, Shahzada Zaman Shuja, and Wael Gamaleldin Abdelrahman. 2024. "Techno-Environmental Evaluation of Alkaline Treatment in Flax Reinforced Thermoplastics" Polymers 16, no. 5: 662. https://doi.org/10.3390/polym16050662
APA StyleVattathurvalappil, S. H., Shaukat, M. M., Theravalappil, R., Shuja, S. Z., & Abdelrahman, W. G. (2024). Techno-Environmental Evaluation of Alkaline Treatment in Flax Reinforced Thermoplastics. Polymers, 16(5), 662. https://doi.org/10.3390/polym16050662