Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate–Chitosan Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation and Characterization of Black Locust Flower Extract
2.3.1. Extraction Procedure
2.3.2. Total Antioxidant Content
2.3.3. Antioxidant Activity According to DPPH Assay
2.3.4. Anti-α-Glucosidase Activity
2.3.5. Cytotoxic Activity According to MTT Assay
2.3.6. Chromatographic Analysis
2.4. Encapsulation of Black Locust Flower Extract in the Microparticles
2.5. Characterization of Microparticles
2.5.1. Determination of the Shape and Size of Microparticles
2.5.2. Determination of Encapsulation Efficiency
2.5.3. Swelling Study
2.6. In Vitro Release of Antioxidants from Microparticles
2.7. Determination of Antioxidant Activity of the Extract after Its Release from Microparticles in Gastrointestinal Fluids
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Black Locust Flower Extract
3.1.1. Total Antioxidant Content
3.1.2. Anti-α-Glucosidase Activity
3.1.3. Cytotoxic Activity
3.1.4. UHPLC–MS Analysis
3.1.5. Antioxidant Activity
3.2. Characterization of Microparticles
3.2.1. Shape and Size of Microparticles
3.2.2. Encapsulation Efficiency
3.2.3. Swelling Study
3.3. In Vitro Studies of Antioxidants Release in Simulated Gastrointestinal Fluids
3.4. Antioxidant Activity of the Extract after Its Release from Microparticles in Gastrointestinal Fluids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kruk, J.; Aboul-Enein, H.Y.; Kładna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019, 53, 497–521. [Google Scholar] [CrossRef]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B. Natural antioxidants of plant origin. Adv. Food Nutr. Res. 2019, 90, 1–81. [Google Scholar] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion? Food Chem. 2018, 259, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Silva, M.S.; Garcia-Estevez, I.; Grosmann, P.; Brás, N.; Brandão, E.; Mateus, N.; de Freitas, V.; Behrens, M.; Meyerhof, W. Human bitter taste receptors are activated by different classes of polyphenols. J. Agric. Food Chem. 2018, 66, 8814–8823. [Google Scholar] [CrossRef] [PubMed]
- Casadey, R.; Broglia, M.; Barbero, C.; Criado, S.; Rivarola, C. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. React. Funct. Polym. 2020, 156, 104729. [Google Scholar] [CrossRef]
- Paulo, F.; Paula, V.; Estevinho, L.M.; Santos, L. Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. Food Bioprod. Process. 2021, 127, 408–425. [Google Scholar] [CrossRef]
- Romero-González, J.; Ah-Hen, K.S.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem. 2020, 313, 126115. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Şahin, S. Encapsulation of olive leaf antioxidants in microbeads: Application of alginate and chitosan as wall materials. Sustain. Chem. Pharm. 2022, 27, 100707. [Google Scholar] [CrossRef]
- Lozano-Vazquez, G.; Lobato-Calleros, C.; Escalona-Buendia, H.; Chavez, G.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Effect of the weight ratio of alginate-modified tapioca starch on the physicochemical properties and release kinetics of chlorogenic acid containing beads. Food Hydrocoll. 2015, 48, 301–311. [Google Scholar] [CrossRef]
- Iskandar, L.; Rojo, L.; Di Silvio, L.; Deb, S. The effect of chelation of sodium alginate with osteogenic ions, calcium, zinc, and strontium. J. Biomater. Appl. 2019, 34, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.D.S.; Diniz, M.M.; De Jong, G.; Gama Filho, H.S.; dos Anjos, M.J.; Finotelli, P.V.; Fontes-Sant’Ana, G.C.; Amaral, P.F.F. Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. Int. J. Biol. Macromol. 2019, 139, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 2011, 12, 2834–2840. [Google Scholar] [CrossRef]
- Kanokpanont, S.; Yamdech, R.; Aramwit, P. Stability enhancement of mulberry-extracted anthocyanin using alginate/chitosan microencapsulation for food supplement application. Artif. Cells Nanomed. Biotechnol. 2018, 46, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.D. Addressing geographical bias: A review of Robinia pseudoacacia (black locust) in the Southern Hemisphere. S. Afr. J. Bot. 2019, 125, 481–492. [Google Scholar] [CrossRef]
- Veitch, N.C.; Elliott, P.C.; Kite, G.C.; Lewis, G.P. Flavonoid glycosides of the black locust tree, Robinia pseudoacacia (Leguminosae). Phytochem. 2010, 71, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.F.; Du, A.L.; Zhang, L.W.; Xu, C.Y.; Yang, M.D.; Li, F.F. Effects of drying methods on antioxidant properties in Robinia pseudoacacia L. flowers. J. Med. Plant Res. 2012, 6, 3233–3239. [Google Scholar]
- Bhalla, P.; Bajpai, V.K. Chemical composition and antibacterial action of Robinia pseudoacacia L. flower essential oil on membrane permeability of foodborne pathogens. J. Essent. Oil-Bear. Plants 2017, 20, 632–645. [Google Scholar] [CrossRef]
- Stefova, M.; Kulevanova, S.; Stafilov, T. Assay of flavonols and quantification of quercetin in medicinal plants by HPLC with UV-diode array detection. J. Liq. Chromatogr. Relat. 2001, 24, 2283–2292. [Google Scholar] [CrossRef]
- Cǎlina, D.; Olah, N.K.; Pǎtru, E.; Docea, A.; Popescu, H.; Bubulica, M.V. Chromatographic analysis of the flavonoids from Robinia pseudoacacia species. Curr. Health Sci. J. 2013, 39, 232–236. [Google Scholar]
- Savic Gajic, I.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of ultrasound-assisted extraction of phenolic compounds from black locust (Robiniae pseudoacaciae) flowers and comparison with conventional methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef]
- Tian, F.; McLaughlin, J.L. Bioactive flavonoids from the black locust tree, Robinia pseudoacacia. Pharm. Biol. 2000, 38, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Grozdanić, N.; Djuričić, I.; Kosanić, M.; Zdunić, G.; Šavikin, K.; Etahiri, S.; Assobhei, O.; Benba, J.; Petović, S.; Matić, I.Z.; et al. Fucus spiralis extract and fractions: Anticancer and pharmacological potentials. JBUON 2020, 25, 1219–1229. [Google Scholar] [PubMed]
- Kolundžić, M.; Grozdanić, N.Đ.; Dodevska, M.; Milenković, M.; Sisto, F.; Miani, A.; Farronato, G.; Kundaković, T. Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr., Polyporaceae. Ind. Crops Prod. 2016, 79, 110–115. [Google Scholar] [CrossRef]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.S.; Lee, B.B.; Ravindra, P.; Poncelet, D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J. Colloid Interface Sci. 2009, 338, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Frent, O.D.; Duda-Seiman, D.M.; Vicas, L.G.; Duteanu, N.; Nemes, N.S.; Pascu, B.; Teusdea, A.; Pallag, A.; Micle, O.; Marian, E. Study of the influence of the excipients used for the synthesis of microspheres loaded with quercetin: Their characterization and antimicrobial activity. Coatings 2023, 13, 1376. [Google Scholar] [CrossRef]
- Hallmann, E. Quantitative and qualitative identification of bioactive compounds in edible flowers of black and bristly locust and their antioxidant activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef] [PubMed]
- Jurca, T.; Pallag, A.; Vicaș, L.; Marian, E.; Mureșan, M.; Ujhelyi, Z.; Fehér, P.; Bacskay, I. Formulation and antioxidant investigation of creams containing Robiniae pseudacaciae flos L. ethanolic extract. Farmacia 2021, 69, 697–704. [Google Scholar] [CrossRef]
- Bratu, M.M.; Birghila, S.; Stancu, L.M.; Mfflai, C.C.; Emoke, P.; Popescu, A.; Radu, M.D.; Zglimbea, L. Evaluation of the antioxidant, cytotoxic and antitumoral activities of a polyphenolic extract of Robinia pseudoacacia L. flowers. J. Sci. Arts 2021, 21, 547–556. [Google Scholar] [CrossRef]
- Han, M.G.; Park, Y.J.; In, M.J.; Kim, D.C. Biological activities of ethanolic extract from Robinia pseudoacacia L. flower. J. Appl. Biol. Chem. 2022, 65, 107–111. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Kocak, M.S.; Tepe, B.; Uren, M.C. An alternative antioxidative and enzyme inhibitory agent from Turkey: Robinia pseudoacacia L. Ind. Crops Prod. 2015, 78, 110–115. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Sieniawska, E. Activities of tannins-From in vitro studies to clinical trials. Nat. Prod. Commun. 2015, 10, 1877–1884. [Google Scholar] [CrossRef]
- Niger, T.; Ohtani, K.; Ahamed, B.F. Inhibitory effects of Japanese plant leaf extracts on α-glucosidase activity. J. Mol. Stud. Med. 2018, 3, 161–168. [Google Scholar]
- Sajjadi, S.E.; Ghanadian, M.; Haghighi, M.; Mouhebat, L. Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells. J. Herbmed Pharmacol. 2015, 4, 15–19. [Google Scholar]
- Uzelac, M.; Sladonja, B.; Šola, I.; Dudaš, S.; Bilić, J.; Famuyide, I.M.; McGaw, L.; Eloff, J.; Mikulic-Petkovsek, M.; Poljuha, D. Invasive alien species as a potential source of phytopharmaceuticals: Phenolic composition and antimicrobial and cytotoxic activity of Robinia pseudoacacia L. leaf and flower extracts. Plants 2023, 12, 2715. [Google Scholar] [CrossRef]
- Cvetković, D.M.; Jovankić, J.V.; Milutinović, M.G.; Nikodijević, D.D.; Grbović, F.J.; Ćirić, A.R.; Topuzović, M.D.; Marković, S.D. The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia 2019, 74, 915–928. [Google Scholar] [CrossRef]
- Sanz, M.; de Simón, B.F.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef]
- Fraternale, D.; Ricci, D.; Verardo, G.; Gorassini, A.; Stocchi, V.; Sestili, P. Activity of Vitis vinifera tendrils extract against phytopathogenic fungi. Nat. Prod. Commun. 2015, 10, 1037–1042. [Google Scholar]
- Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Mahomoodally, F.; Picot-Allain, C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Cvetanović, A.; Aktumsek, A.; Zeković, Z.; Rengasamy, K.R. Metabolomic profile of Salvia viridis L. root extracts using HPLC–MS/MS technique and their pharmacological properties: A comparative study. Ind. Crops Prod. 2019, 131, 266–280. [Google Scholar] [CrossRef]
- Destandau, E.; Charpentier, J.P.; Bostyn, S.; Zubrzycki, S.; Serrano, V.; Seigneuret, J.M.; Breton, C. Gram-scale purification of dihydrorobinetin from Robinia pseudoacacia L. wood by centrifugal partition chromatography. Separations 2016, 3, 23. [Google Scholar] [CrossRef]
- Shaker, K.H.; Zohair, M.M.; Hassan, A.Z.; Sweelam, H.T.M.; Ashour, W.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch. Microbiol. 2022, 204, 661. [Google Scholar] [CrossRef]
- Vuković, N.L.; Vukić, M.D.; Đelić, G.T.; Kacaniova, M.M.; Cvijović, M. The investigation of bioactive secondary metabolites of the methanol extract of Eryngium amethystinum. Kragujevac J. Sci. 2018, 40, 113–129. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, N.M.; El-Din, M.I.G.; Salem, M.M.; Rashedy, S.H.; Lee, G.S.; Jang, Y.S.; Kim, K.; Kim, C.; El-Shazly, M.; Fayez, S. Enhanced expression of p53 and Suppression of PI3K/Akt/mTOR by three red sea algal extracts: Insights on their composition by LC-MS-based metabolic profiling and molecular networking. Mar. Drugs 2023, 21, 404. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Mbakidi-Ngouaby, H.; Pinault, E.; Gloaguen, V.; Costa, G.; Sol, V.; Millot, M.; Mambu, L. Profiling and seasonal variation of chemical constituents from Pseudotsuga menziesii wood. Ind. Crops Prod. 2018, 117, 34–39. [Google Scholar] [CrossRef]
- Ghareeb, M.; Saad, A.; Ahmed, W.; Refahy, L.; Nasr, S. HPLC-DAD-ESI-MS/MS characterization of bioactive secondary metabolites from Strelitzia nicolai leaf extracts and their antioxidant and anticancer activities in vitro. Pharmacogn. Res. 2018, 10, 368–378. [Google Scholar] [CrossRef]
- Chandradevan, M.; Simoh, S.; Mediani, A.; Ismail, N.H.; Ismail, I.S.; Abas, F. UHPLC-ESI-Orbitrap-MS analysis of biologically active extracts from Gynura procumbens (Lour.) Merr. and Cleome gynandra L. leaves. eCAM 2020, 2020, 3238561. [Google Scholar] [CrossRef] [PubMed]
- Grati, W.; Samet, S.; Bouzayani, B.; Ayachi, A.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. HESI-MS/MS analysis of phenolic compounds from Calendula aegyptiaca fruits extracts and evaluation of their antioxidant activities. Molecules 2022, 27, 2314. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and in vitro preliminary anti-inflammatory activity of Castanea sativa (Italian Cultivar “Marrone di Roccadaspide” PGI) burs, leaves, and chestnuts extracts and their metabolite profiles by LC-ESI/LTQOrbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Gouveia-Figueira, S.; Castilho, P.C. Ulex europaeus: From noxious weed to source of valuable isoflavones and flavanones. Ind. Crops Prod. 2016, 90, 9–27. [Google Scholar] [CrossRef]
- Żuchowski, J.; Skalski, B.; Juszczak, M.; Woźniak, K.; Stochmal, A.; Olas, B. LC/MS analysis of saponin fraction from the leaves of Elaeagnus rhamnoides (L.) A. Nelson and its biological properties in different in vitro models. Molecules 2020, 25, 3004. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Hassan, W.H.; Abdelaziz, S.; Amina, M.; Adel, R.; El-Sayed, M.A. UPLC-ESI-MS/MS profile and antioxidant, cytotoxic, antidiabetic, and antiobesity activities of the aqueous extracts of three different Hibiscus species. J. Chem. 2020, 2020, 6749176. [Google Scholar] [CrossRef]
- Huang, Y.X.; Liang, J.; Chai, J.H.; Kuang, H.X.; Xia, Y.G. Structure of a highly branched galacturonoglucan from fruits of Schisandra chinensis (Turcz.) Baill. Carbohydr. Polym. 2023, 313, 120844. [Google Scholar] [CrossRef]
- March, R.E.; Miao, X.S.; Metcalfe, C.D. A fragmentation study of a flavone triglycoside, kaempferol-3-O-robinoside-7-O-rhamnoside. Rapid Commun. Mass Spectrom. 2004, 18, 931–934. [Google Scholar] [CrossRef]
- Matkovits, A.; Nagy, K.; Fodor, M.; Jókai, Z. Analysis of polyphenolic components of Hungarian acacia (Robinia pseudoacacia) honey; method development, statistical evaluation. J. Food Compos. Anal. 2023, 120, 105336. [Google Scholar] [CrossRef]
- Tian, J.; Gong, Y.; Li, J. Nutritional attributes and phenolic composition of flower and bud of Sophora japonica L. and Robinia pseudoacacia L. Molecules 2022, 27, 8932. [Google Scholar] [CrossRef]
- Liu, R.; Cai, Z.; Xu, B. Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC–DAD–ESI–MSn analysis. Chem. Cent. J. 2017, 11, 1–17. [Google Scholar] [CrossRef]
- Ervina, M.; Nawu, Y.E.; Esar, S.Y. Comparison of in vitro antioxidant activity of infusion, extract and fractions of Indonesian Cinnamon (Cinnamomum burmannii) bark. Int. Food Res. J. 2016, 23, 1346–1350. [Google Scholar]
- Yousefi, M.; Khanniri, E.; Shadnoush, M.; Khorshidian, N.; Mortazavian, A.M. Development, characterization and in vitro antioxidant activity of chitosan-coated alginate microcapsules entrapping Viola odorata Linn. extract. Int. J. Biol. Macromol. 2020, 163, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Villate, A.; San Nicolas, M.; Olivares, M.; Aizpurua-Olaizola, O.; Usobiaga, A. Chitosan-coated alginate microcapsules of a full-spectrum Cannabis extract: Characterization, long-term stability and in vitro bioaccessibility. Pharmaceutics 2023, 15, 859. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.B.; Ravindra, P.; Chan, E.S. Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Technol. 2013, 36, 1627–1642. [Google Scholar] [CrossRef]
- Lim, G.P.; Lee, B.B.; Ahmad, M.S.; Singh, H.; Ravindra, P. Influence of process variables and formulation composition on sphericity and diameter of Ca-alginate-chitosan liquid core capsule prepared by extrusion dripping method. Part. Sci. Technol. 2016, 34, 681–690. [Google Scholar] [CrossRef]
- Ling, K.; Wu, H.; Neish, A.S.; Champion, J.A. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J. Control Release 2019, 295, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Unagolla, J.M.; Jayasuriya, A.C. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 2018, 114, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Pravilović, R.N.; Balanč, B.D.; Djordjević, V.B.; Bošković-Vragolović, N.M.; Bugarski, B.M.; Pjanović, R.V. Diffusion of polyphenols from alginate, alginate/chitosan, and alginate/inulin particles. J. Food Process Eng. 2019, 42, e13043. [Google Scholar] [CrossRef]
- Mulia, K.; Singarimbun, A.C.; Krisanti, E.A. Optimization of chitosan–alginate microparticles for delivery of mangostins to the colon area using Box–Behnken experimental design. Int. J. Mol. Sci. 2020, 21, 873. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Corrêa, R.C.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Correa, V.G.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Effects of in vitro gastrointestinal digestion and colonic fermentation on a rosemary (Rosmarinus officinalis L.) extract rich in rosmarinic acid. Food Chem. 2019, 271, 393–400. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Vlahoviček-Kahlina, K.; Martinko, K.; Šegota, S.; Marijan, M.; Krčelić, A.; Svečnjak, L.; Majdak, M.; Nemet, I.; et al. Novel zinc/silver ions-loaded alginate/chitosan microparticles antifungal activity against Botrytis cinerea. Polymers 2023, 15, 4359. [Google Scholar] [CrossRef] [PubMed]
- El Maghraby, G.M.; Arafa, M.F. Alginate-chitosan combinations in controlled drug delivery. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Hasnain, M.S., Nayak, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 339–361. [Google Scholar]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Kelishomi, Z.H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; Moosavi-Movahedi, A.A.; Mamashli, F.; Bigdeli, B. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem. 2016, 196, 897–902. [Google Scholar] [CrossRef]
- Yen, M.T.; Yang, J.H.; Mau, J.L. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
Cell Lines | IC50 (µg/mL) |
---|---|
HeLa | 161.99 ± 6.88 |
MRC-5 | >200 |
LS-174 | >200 |
A549 | >200 |
No. | Rt, min | Molecular or Adduct Ion, m/z | Fragment Ions, m/z | Compound | Class of Compounds | References |
---|---|---|---|---|---|---|
1 | 1.41 | 116.96 | 89 (100%) | unknown | ||
2 | 1.35 | 136.67 | 91 (100%) | protocatechuic aldehyde | phenolic aldehyde | [42] |
3 | 1.27 | 136.97 | 109, 91 (100%) | 2,4-dihydroxybenzaldehyde | phenolic aldehyde | [42] |
4 | 0.95 | 161.07 | 143, 115, 99 (100%), 89, 57 | 3- or 4-hydroxy-2-oxoglutaric acid | keto organic acid | [43] |
5 | 0.81 | 191.13 | 173, 145, 129, 111 (100%), 101 | citric acid | organic acid | [43] |
6 | 1.29 | 218.13 a | 200, 130, 99, 88 (100%) | D-(+)-pantothenic acid | organic acid (vitamin) | |
7 | 1.44 | 224.96 [M−H + HCOOH + HOH]− | 179 (100%), 161, 143, 119, 89 | 3- or 4-hydroxy-2-oxoglutaric acid | phenolic aldehyde | |
8 | 0.98 | 239.04 a [M−H + HCOOH]− | 193 (100%), 165, 124, 114 | ferulic acid | hydroxycinnamic acid | |
9 | 4.13 | 250.08 | 204, 146, 132 (100%), 115, 91, 88 | L-aspartic acid derivative | α-Amino acid | |
10 | 5.44 | 252.12 a | 234, 137, 136 (100%), 92 | 4-amino benzoic acid derivative | organic acid | |
11 | 10.01 | 265.28 a | 97 (100%) | oxidized fatty acid | fatty acid | |
12 | 12.4 | 271.3 | 253, 225 (100%) | pinobanksin | flavanonol | [44] |
13 | 10.29 | 285.39 | 267, 223 (100%) | hexadecanedioic acid | fatty acid | [45] |
14 | 8.41 | 287.47 | 269 (100%), 223, 211, 169, 155, 139 | fustin | flavanonol | [46] |
15 | 12.94 | 299.36 | 253 (100%) | questinol | quinone | [47] |
16 | 7.17 | 301.35 | 273, 255, 239, 193, 179 (100%), 151, 107 | quercetin | flavonol | [48] |
17 | 4.07 | 305.01 | 261 (100%), 224, 201, 181, 128 | gallocatechin | flavanol | [49] |
18 | 9.43 | 311.45 | 293 (100%), 275, 253, 235, 223, 201, 183, 171 | hydroxydioxoheptadecenoic acid | fatty acid | [50] |
19 | 9.75 | 313.39 | 295 (100%), 277, 213, 201, 195, 183, 179, 171, 129 | dihydroxy-octadecenoic acid | fatty acid | [51] |
20 | 1.18 | 321.06 | 277 (100%), 259, 215, 128 | 12-hydroxy-6, 8, 10, 13-octatetraenedioic acid | fatty acid | [52] |
21 | 8.44 | 327.47 | 309 (100%), 291, 263, 251, 225, 209, 197, 183 | 9,12,13-trihydroxyoctadecadienoic acid | fatty acid | [50] |
22 | 8.33 | 327.5 | 309, 291 (100%), 239, 197, 171 | hirsutenone | diarylheptanoid | [53] |
23 | 8.3 | 329.43 | 311, 293, 229, 211, 171 (100%) | 11,12,13-trihydroxyoctadecenoic acid | fatty acid | [50] |
24 | 12 | 343.41 | 325, 283 (100%), 254, 225, 211 | unknown | ||
25 | 7.52 | 345.58 a | 327, 317, 301, 291, 285, 271, 245, 239, 229, 215 (100%), 195, 181 | gibberellic acid | plant hormone | |
26 | 2.27 | 355.04 | 337, 216, 209, 191 (100%), 173, 129 | coumaroylglucaric acid isomer | phenolic acid | [54] |
27 | 2.07 | 355.27 | 337, 322, 309, 209, 191 (100%), 173, 147 | coumaroylglucaric acid isomer | phenolic acid | [54] |
28 | 0.61 | 387.2 [M−H + HCOOH]− | 341 (100%), 251, 195, 179 | caffeic acid hexoside | hydroxycinnamic acid | [55] |
29 | 4.73 | 395.14 | 377, 349 (100%), 179, 143 | unknown | ||
30 | 11.47 | 409.4 | 361, 251, 171, 153 (100%) | lyso-phosphatidic acid (16:0) | phospholipid | [56] |
31 | 12.86 | 411.32 | 368, 281, 147, 129 (100%) | unknown | ||
32 | 6.95 | 423.57 | 405, 279 (100%), 249, 235, 205, 169, 139, 122 | unknown | ||
33 | 10.57 | 431.42 | 171, 153 (100%) | N-acylglycerophosphatidylethanolamine (18:3) | phospholipid | [56] |
34 | 11.19 | 433.45 | 329, 313, 279, 171, 153 (100%) | N-acylglycerophosphatidylethanolamine (18:2) | phospholipid | [56] |
35 | 12.56 | 437.37 | 420, 313, 285, 279, 263, 251, 171, 153 (100%) | |||
36 | 6.35 | 447.55 a | 357, 327, 285 (100%), 255, 241, 165 | kaempferol-3-O-glucoside | flavonol | |
37 | 7.55 | 449.58 a | 431, 413, 403, 353, 327, 301, 287 (100%), 269, 251, 239 | isookanin-7-O-glucoside | flavanone | |
38 | 5.1 | 459.23 | 441, 399, 381, 295, 287, 242, 173, 157 (100%) | sterol-hexose conjugates (ST21:3;O;Hex)/sterol (ST 27:4;O6) | sterol | [50] |
39 | 11.93 | 463.21 | 445, 426, 417 (100%), 399, 356, 345, 301, 255, 161 | quercetin-3-O-glucoside | flavonol | [48] |
40 | 10.23 | 476.41 | 402, 384, 277, 233, 171, 153 (100%) | N-acylglycerophosphatidylethanolamine (18:2) | phospholipid | [56] |
41 | 12.71 | 480.46 | 434, 412, 390, 350, 279, 200 (100%) | unknown | ||
42 | 7.4 | 483.57 | 465, 439, 421, 391 (100%), 229, 172, 153 | unknown | ||
43 | 7.43 | 491.36 [M−H + HCOOH]− | 445, 343, 303, 283 (100%) | glycitein-o-hexoside | isoflavone | [57] |
44 | 13.52 | 499.42 | 313, 261, 255 (100%), 243, 187 | unknown | ||
45 | 5.65 | 501.18 | 483, 403, 250, 206 (100%), 164, 147 | unknown | ||
46 | 7.37 | 503.36 | 459 (100%), 441, 365, 345, 327, 281, 187 | liquiritigenin derivative | flavanone | [57] |
47 | 11.72 | 505.43 | 487, 467, 361, 267, 255 (100%), 249, 231, 205, 189 | monoacylglyceryl glucuronides (16:0) | glycerolipid | [50] |
48 | 6.56 | 511.47 | 493, 452, 431 (100%), 285 | unknown | ||
49 | 14.05 | 547.51 a | 287 (100%), 277, 269 | fustin derivative | flavanonol | |
50 | 11.81 | 555.13 | 509, 486, 475 (100%), 280 | unknown | ||
51 | 10.82 | 555.52 a | 538, 495, 476, 390, 285 (100%), 269, 223, 195 | cyanidin derivative | anthocyanin | |
52 | 11.16 | 557.66 a | 287 (100%), 269, 239, 221 | fustin derivative | flavanonol | |
53 | 10.76 | 564.37 | 520, 504 (100%), 279, 251 | unknown | ||
54 | 10.7 | 571.46 | 409, 391, 315, 283, 255 (100%), 241 | palmitoyl-glycerophosphoinositol | phospholipid | [58] |
55 | 10.13 | 577.43 | 532, 514, 475, 317, 299 (100%), 225, 207, 165 | sulfoquinovosyl monoacylglycerols (18:3) | polar lipid | [50] |
56 | 10.07 | 577.55 | 521, 469, 371, 299 (100%), 277, 225, 207, 189, 165 | unknown | ||
57 | 12.37 | 579.34 | 445, 410, 392 (100%), 323, 256, 187 | unknown | ||
58 | 11.9 | 583.46 | 537, 442, 299 (100%), 287, 225, 207, 183, 165 | unknown | ||
59 | 6.22 | 593.44 | 549, 339, 327, 285 (100%), 255, 239, 227, 211, 186 | kaempferol rutinoside | flavonol | [54] |
60 | 10.32 | 595.5 | 507, 415, 341, 315, 279 (100%), 261, 241, 223 | lyso-phosphatidylinositols (18:2) | phospholipid | [56] |
61 | 12.82 | 607.32 | 575 (100%), 563, 531, 487, 475, 329, 311, 295, 277 | diosmetin-7-O-glucuronide-3′-O-pentoside | flavone | [59] |
62 | 6.44 | 623.06 | 577 (100%), 507, 350, 300 | isorhamnetin-O-rutinoside | flavonol | [48] |
63 | 11.22 | 625.28 | 579 (100%), 557, 341, 306, 287 | unknown | ||
64 | 7.34 | 637.43 [M−H + HCOOH]− | 591 (100%), 335, 283, 268 | acacetin-rhamnoglucoside isomer | flavone | [59] |
65 | 10.38 | 647.28 | 601 (100%), 485, 323 | galacturonoglucan | glucan | [60] |
66 | 11 | 649.33 | 621, 603 (100%), 423 | unknown | [56] | |
67 | 12.24 | 653.25 [M−H + HCOOH]− | 607 (100%), 311 | diosmetin-7-O-glucuronide-3′-O-pentoside | flavone | [59] |
68 | 13.14 | 721.56 | 683, 678, 595, 465 (100%), 416, 409, 391, 329, 255 | unknown | ||
69 | 5.94 | 739.41 | 593 (100%), 431, 369, 285, 246 | kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) | flavonol | [61] |
70 | 9.51 | 763.82 | 632, 613, 571, 551, 525, 498, 455 (100%), 437, 407, 358, 249 | unknown | ||
71 | 6.69 | 767.46 | 749, 707, 657, 483, 325, 283 (100%), 268 | kaempferol-3-O-(4-coumaroyl)-(feruloyl)-glucoside (isomer) | flavonol | [62] |
72 | 6.66 | 767.52 a | 749, 592, 483, 283 (100%), 268, 240 | acacetin derivative | flavone | |
73 | 6.98 | 769.25 | 723 (100%), 415, 283 | unknown | ||
74 | 13.6 | 774.26 | 728 (100%), 579 | unknown | ||
75 | 9.61 | 793.78 | 750, 613, 603, 454 (100%), 436 | unknown | ||
76 | 6.79 | 799.24 | 753 (100%), 529 | unknown | ||
77 | 12.79 | 827.75 | 810, 720, 626, 558, 539, 287 (100%), 269 | fustin derivative | flavanonol | [46] |
78 | 8.8 | 881.82 | 838 (100%), 778, 723, 381 | unknown | ||
79 | 12.21 | 883.55 | 721, 391, 335, 329 (100%), 291 | unknown | ||
80 | 9.65 | 921.73 | 876, 822 (100%), 741, 652, 585, 564, 457, 401 | unknown | ||
81 | 5.37 | 947.08 | 991 (100%), 787 | unknown | ||
82 | 8.91 | 957.36 | 822, 797, 708, 498 (100%), 453 | triterpenoid saponin | saponin | |
83 | 9.29 | 970.98 | 924 (100%), 827, 719 | unidentified saponin | saponin | |
84 | 9.25 | 971.3 | 840 (100%), 714 | unknown | ||
85 | 8.87 | 985.44 | 819 (100%), 595, 447 | unknown | ||
86 | 13.04 | 997.28 | 966, 746, 718 (100%) | unknown | ||
87 | 8.15 | 1001.05 | 992, 982, 934, 363 (100%) | unknown | ||
88 | 7.78 | 1003.37 [M−H + HCOOH]− | 959, 896 (100%), 640 | triterpenoid saponin | saponin | |
89 | 6.85 | 1155.44 | 577 (100%) | sulfoquinovosyl monoacylglycerols (18:3) dimer | polar lipid |
Kinetic Model | Equation | Alginate Microparticle | Alginate–Chitosan Microparticle | ||
---|---|---|---|---|---|
Parameter | Goodness of Fit | Parameter | Goodness of Fit | ||
Zero order | k0 = 13.446 | R2 = –0.4241 Radj2 = –0.4241 RMSE = 23.7987 AIC = 58.9172 | k0 = 12.547 | R2 = –0.2469 Radj2 = –0.2469 RMSE = 21.4682 AIC = 57.4743 | |
First order | k1 = 0.299 | R2 = 0.2264 Radj2 = 0.2264 RMSE = 17.5400 AIC = 54.6451 | k1 = 0.247 | R2 = 0.2719 Radj2 = 0.2719 RMSE = 16.4048 AIC = 53.7084 | |
Higuchi model | kH = 30.572 | R2 = 0.6575 Radj2 = 0.6575 RMSE = 11.6704 AIC = 48.9411 | kH = 28.372 | R2 = 0.7112 Radj2 = 0.7112 RMSE = 10.3328 AIC = 47.2368 | |
Korsmeyer–Peppas model | kKP = 38.296 n = 0.305 | R2 = 0.8675 Radj2 = 0.8410 RMSE = 7.9514 AIC = 44.2930 | kKP = 34.892 n = 0.322 | R2 = 0.8701 Radj2 = 0.8442 RMSE = 7.5899 AIC = 43.6414 | |
Hixson–Crowell model | kHC = 0.076 | R2 = 0.0204 Radj2 = 0.0204 RMSE = 19.7379 AIC = 56.2979 | kHC = 0.065 | R2 = 0.1062 Radj2 = 0.1062 RMSE = 18.1759 AIC = 55.1437 | |
Baker–Lonsdale model | kBL = 0.024 | R2 = 0.7877 Radj2 = 0.7877 RMSE = 9.1895 AIC = 45.5952 | kBL = 0.019 | R2 = 0.8105 Radj2 = 0.8105 RMSE = 8.3700 AIC = 44.2875 |
Microparticle | Simulated Gastric Fluid | Simulated Intestinal Fluid |
---|---|---|
Alginate | 109.4 ± 0.06 | 89.6 ± 0.07 |
Alginate–chitosan | 115.7 ± 0.03 | 68.3 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boškov, I.A.; Savić, I.M.; Grozdanić Stanisavljević, N.Đ.; Kundaković-Vasović, T.D.; Radović Selgrad, J.S.; Savić Gajić, I.M. Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate–Chitosan Microparticles. Polymers 2024, 16, 688. https://doi.org/10.3390/polym16050688
Boškov IA, Savić IM, Grozdanić Stanisavljević NĐ, Kundaković-Vasović TD, Radović Selgrad JS, Savić Gajić IM. Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate–Chitosan Microparticles. Polymers. 2024; 16(5):688. https://doi.org/10.3390/polym16050688
Chicago/Turabian StyleBoškov, Ivana A., Ivan M. Savić, Nađa Đ. Grozdanić Stanisavljević, Tatjana D. Kundaković-Vasović, Jelena S. Radović Selgrad, and Ivana M. Savić Gajić. 2024. "Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate–Chitosan Microparticles" Polymers 16, no. 5: 688. https://doi.org/10.3390/polym16050688
APA StyleBoškov, I. A., Savić, I. M., Grozdanić Stanisavljević, N. Đ., Kundaković-Vasović, T. D., Radović Selgrad, J. S., & Savić Gajić, I. M. (2024). Stabilization of Black Locust Flower Extract via Encapsulation Using Alginate and Alginate–Chitosan Microparticles. Polymers, 16(5), 688. https://doi.org/10.3390/polym16050688