Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alginate Extraction Process
2.2. Characterization of Commercial and RO Extracted Alginate
2.2.1. Differential Scanning Calorimetry (DSC)
2.2.2. Thermogravimetric Analysis (TGA)
2.2.3. Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.2.4. Proton Nuclear Magnetic Resonance (1H-NMR)
2.2.5. Determination of Intrinsic Viscosity and Molecular Mass of the Extracted Alginate
2.3. Gelation Process of Extracted and Commercial Alginate
2.4. Characterization of Calcium Alginate Gels
2.4.1. Viscosity of Alginate Solutions
2.4.2. Rheological Properties of Gels
2.4.3. Water Uptake Capacity (WUC), Soluble Matter Loss (SML) and Water Holding Capacity (WHC)
2.4.4. Scanning Electron Microscopy (SEM)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Alginate Characterization
3.1.1. ATR-FTIR and 1H-NMR
3.1.2. Determination of Intrinsic Viscosity and Molecular Weight
3.1.3. DSC and TGA
3.2. Characterization of the Commercial and RO-Extracted Alginate Gels
3.2.1. Rheological Characterization of Sodium Alginate Solution and Calcium Alginate Gels
3.2.2. Water Uptake Capacity (WUC), Soluble Matter Loss (SML) and Water Holding Capacity (WHC)
3.2.3. Scanning Electron Microscopy (SEM) of Calcium Alginate Gels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Moral, A.; Aguado, R.; Castelló, R.; Tijero, A.; Ballesteros, M. Potential Use of Green Alga Ulva sp. for Papermaking. Bioresources 2019, 14, 6851–6862. [Google Scholar] [CrossRef]
- Zollmann, M.; Robin, A.; Prabhu, M.; Polikovsky, M.; Gillis, A.; Greiserman, S.; Golberg, A. Green Technology in Green Macroalgal Biorefineries. Phycologia 2019, 58, 516–534. [Google Scholar] [CrossRef]
- Goyanes, S.N.; D’Accorso, N.B. Industrial Applications of Renewable Biomass Products: Past, Present and Future; Springer: Cham, Switzerland, 2017; pp. 1–332. [Google Scholar]
- Freile-Pelegrín, Y.; Madera-Santana, T.J. Biodegradable Polymer Blends and Composites from Seaweeds. In Handbook of Composites from Renewable Materials; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 1–8, pp. 419–438. [Google Scholar] [CrossRef]
- Lim, C.; Yusoff, S.; Ng, C.G.; Lim, P.E.; Ching, Y.C. Bioplastic Made from Seaweed Polysaccharides with Green Production Methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of Polysaccharides Extracted from Brown Seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-Box Model-Based Gelation of Alginate and Pectin: A Review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef]
- Sachan, N.K.; Pushkar, S.; Jha, A.; Bhattcharya, A. Sodium Alginate: The Wonder Polymer for Controlled Drug Delivery. J. Pharm. Res. 2009, 2, 1191–1199. [Google Scholar]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-Induced Gelation of Alginate: Mechanisms and Applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef]
- Hu, C.; Lu, W.; Sun, C.; Zhao, Y.; Zhang, Y.; Fang, Y. Gelation Behavior and Mechanism of Alginate with Calcium: Dependence on Monovalent Counterions. Carbohydr. Polym. 2022, 294, 119788. [Google Scholar] [CrossRef]
- Altamirano Jeschke, M.; Zanolla, M. Análisis de Riesgos de La Macroalga Exótica Rugulopteryx Okamurae; Ministerio Para La Transición Ecológica y Reto Demográfico: Madrid, Spain, 2019; p. 69. [Google Scholar]
- MITECO. Estrategia De Control Del Alga Rugulopteryx Okamurae En España; MITECO: Madrid, Spain, 2022; pp. 1–93. [Google Scholar]
- Santana, I.; Félix, M.; Guerrero, A.; Bengoechea, C. Processing and Characterization of Bioplastics from the Invasive Seaweed Rugulopteryx Okamurae. Polymers 2022, 14, 355. [Google Scholar] [CrossRef]
- Calumpong, H.P.; Maypa, A.P.; Magbanua, M. Population and Alginate Yield and Quality Assessment of Four Sargassum Species in Negros Island, Central Philippines. Hydrobiologia 1999, 398–399, 211–215. [Google Scholar] [CrossRef]
- Saji, S.; Hebden, A.; Goswami, P.; Du, C. A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability 2022, 14, 5181. [Google Scholar] [CrossRef]
- Fertah, M.; Belfkira, A.; Dahmane, E.M.; Taourirte, M.; Brouillette, F. Extraction and Characterization of Sodium Alginate from Moroccan Laminaria Digitata Brown Seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Fenoradosoa, T.A.; Ali, G.; Delattre, C.; Laroche, C.; Petit, E.; Wadouachi, A.; Michaud, P. Extraction and Characterization of an Alginate from the Brown Seaweed Sargassum Turbinarioides Grunow. J. Appl. Phycol. 2010, 22, 131–137. [Google Scholar] [CrossRef]
- Clementi, F.; Mancini, M.; Moresi, M. Rheology of Alginate from Azotobacter Vinelandii in Aqueous Dispersions. J. Food Eng. 1998, 36, 51–62. [Google Scholar] [CrossRef]
- da Costa, M.P.M.; Delpech, M.C.; de Mello Ferreira, I.L.; de Macedo Cruz, M.T.; Castanharo, J.A.; Cruz, M.D. Evaluation of Single-Point Equations to Determine Intrinsic Viscosity of Sodium Alginate and Chitosan with High Deacetylation Degree. Polym. Test. 2017, 63, 427–433. [Google Scholar] [CrossRef]
- Fedors, R.F. An Equation Suitable for Describing the Viscosity of Dilute to Moderately Concentrated Polymer Solutions. Polymer 1979, 20, 225–228. [Google Scholar] [CrossRef]
- Liggat, J. Physical Chemistry of Macromolecules: Basic Principles and Issues, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 19, ISBN 9786468600. [Google Scholar]
- Mackie, W.; Noy, R.; Sellen, D.B. Solution Properties of Sodium Alginate. Biopolymers 1980, 19, 1839–1860. [Google Scholar] [CrossRef]
- Smidsrød, O. Solution Properties of Alginate. October 1970, 13, 359–372. [Google Scholar] [CrossRef]
- Donnan, F.G.; Rose, R.C. Osmotic pressure, molecular weight, and viscosity of sodium alginate. Can. J. Res. 1950, 28b, 105–113. [Google Scholar] [CrossRef]
- Martinsen, A.; Skjåk-Bræk, G.; Smidsrød, O.; Zanetti, F.; Paoletti, S. Comparison of Different Methods for Determination of Molecular Weight and Molecular Weight Distribution of Alginates. Carbohydr. Polym. 1991, 15, 171–193. [Google Scholar] [CrossRef]
- Mancini, M.; Moresi, M.; Rancini, R. Mechanical Properties of Alginate Gels: Empirical Characterisation. J. Food Eng. 1999, 39, 369–378. [Google Scholar] [CrossRef]
- Fu, S.; Thacker, A.; Sperger, D.M.; Boni, R.L.; Buckner, I.S.; Velankar, S.; Munson, E.J.; Block, L.H. Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties. AAPS PharmSciTech 2011, 12, 453–460. [Google Scholar] [CrossRef]
- Mancini, M.; Moresi, M.; Rancini, R. Uniaxial Compression and Stress Relaxation Tests on Alginate Gels. J. Texture Stud. 1999, 30, 639–657. [Google Scholar] [CrossRef]
- Antonio, S.; Presb, G.; Peña-par, L.; Iv, E.; Patricia, K.; Galv, V.; Vop, M.; Kumpov, I.; Elizalde-herrera, L.E. Characterization of Sodium Alginate Hydrogels Reinforced with Nanoparticles of Hydroxyapatite for Biomedical Applications. Polymers 2021, 13, 2927. [Google Scholar]
- Shabanian, M.; Hajibeygi, M.; Raeisi, A. FTIR Characterization of Layered Double Hydroxides and Modified Layered Double Hydroxides. In Layered Double Hydroxide Polymer Nanocomposites; Woodhead Publishing: Sawston, UK, 2020; pp. 77–101. [Google Scholar] [CrossRef]
- Sakugawa, K.; Ikeda, A.; Takemura, A.; Ono, H. Simplified Method for Estimation of Composition of Alginates by FTIR. J. Appl. Polym. Sci. 2004, 93, 1372–1377. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. A Green Approach for Alginate Extraction from Sargassum Muticum Brown Seaweed Using Ultrasound-Assisted Technique. Int. J. Biol. Macromol. 2019, 124, 451–459. [Google Scholar] [CrossRef]
- Bajpai, M.; Shukla, P.; Bajpai, S.K. Enhancement in the Stability of Alginate Gels Prepared with Mixed Solution of Divalent Ions Using a Diffusion through Dialysis Tube (DTDT) Approach. J. Macromol. Sci. Part A Pure Appl. Chem. 2017, 54, 301–310. [Google Scholar] [CrossRef]
- Grasdalen, H. Study of the Composition and Sequence of Uronate Residues in Alginate. J. Chem. Inf. Model. 1979, 68, 23–31. [Google Scholar] [CrossRef]
- Larsen, B.; Salem, D.M.S.A.; Sallam, M.A.E.; Mishrikey, M.M.; Beltagy, A.I. Characterization of the Alginates from Algae Harvested at the Egyptian Red Sea Coast. Carbohydr. Res. 2003, 338, 2325–2336. [Google Scholar] [CrossRef]
- Smidsr0d, O.; Skak-Braek, G. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, Y.; Vreeker, R.; Appelqvist, I.; Mendes, E. Reexamining the Egg-Box Model in Calcium—Alginate Gels with X-Ray Diffraction. Biomacromolecules 2007, 8, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Alberto Masuelli, M.; Omar Illanes, C. Review of the Characterization of Sodium Alginate by Intrinsic Viscosity Measurements. Comparative Analysis between Conventional and Single Point Methods. Int. J. BioMater. Sci. Eng. 2014, 1, 1–11. [Google Scholar]
- Kaidi, S.; Bentiss, F.; Jama, C.; Khaya, K.; Belattmania, Z.; Reani, A.; Sabour, B. Isolation and Structural Characterization of Alginates from the Kelp Species Laminaria Ochroleuca and Saccorhiza Polyschides from the Atlantic Coast of Morocco. Colloids Interfaces 2022, 6, 51. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Abulateefeh, S.R.; Taha, M.O. Enhanced Drug Encapsulation and Extended Release Profiles of Calcium-Alginate Nanoparticles by Using Tannic Acid as a Bridging Cross-Linking Agent. J. Microencapsul. 2015, 32, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.P.; Santos, J.E.; Chierice, G.O.; Cavalheiro, E.T.G. Thermal Behavior of Alginic Acid and Its Sodium Salt. Eclet. Quim. 2004, 29, 57–63. [Google Scholar] [CrossRef]
- Madhusudana Rao, K.; Krishna Rao, K.S.V.; Sudhakar, P.; Chowdoji Rao, K.; Subha, M.C.S. Synthesis and Characterization of Biodegradable Poly (Vinyl Caprolactam) Grafted on to Sodium Alginate and Its Microgels for Controlled Release Studies of an Anticancer Drug. J. Appl. Pharm. Sci. 2013, 3, 61–69. [Google Scholar]
- Freed, K.F.; Edwards, S.F. Polymer Viscosity in Concentrated Solutions. J. Chem. Phys. 1974, 61, 3626–3633. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.B.; Gabas, A.L. Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M. Rheology of Aqueous Solutions of Food Additives. J. Food Eng. 2003, 56, 387–392. [Google Scholar] [CrossRef]
- LeRoux, M.A.; Guilak, F.; Setton, L.A. Compressive and Shear Properties of Alginate Gel: Effects of Sodium Ions and Alginate Concentration. J. Biomed. Mater. Res. 1999, 47, 46–53. [Google Scholar] [CrossRef]
- Buchholz, F.L.; Graham, A.T. (Eds.) Modern Superabsorbent Polymer Technology; Wiley-VCH: Weinheim, Germany, 1998; p. 304. ISBN 978-0-471-19411-8. [Google Scholar]
- Zhang, X.; Wang, X.; Fan, W.; Liu, Y.; Wang, Q.; Weng, L. Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers 2022, 14, 3227. [Google Scholar] [CrossRef]
- Milivojević, M.; Popović, A.; Pajić-Lijaković, I.; Šoštarić, I.; Kolašinac, S.; Stevanović, Z.D. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023, 9, 620. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, I.; Felix, M.; Bengoechea, C. Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels. Polymers 2024, 16, 702. https://doi.org/10.3390/polym16050702
Santana I, Felix M, Bengoechea C. Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels. Polymers. 2024; 16(5):702. https://doi.org/10.3390/polym16050702
Chicago/Turabian StyleSantana, Ismael, Manuel Felix, and Carlos Bengoechea. 2024. "Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels" Polymers 16, no. 5: 702. https://doi.org/10.3390/polym16050702
APA StyleSantana, I., Felix, M., & Bengoechea, C. (2024). Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels. Polymers, 16(5), 702. https://doi.org/10.3390/polym16050702