Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing
Abstract
:1. Introduction
2. Mathematical Model of Curing Process
2.1. Cure Kinetic Model
- (1)
- Nth-order Model
- (2)
- Autocatalytic Model
2.2. Thermo-Chemical Model
3. Establishment and Validation of the Finite Element (FE) Model
3.1. Autoclave Processing and Materials
3.2. Establishment of the FE Model of Curing Process for the Composite Laminates
3.3. Validation of the FE Model of Curing Process for the Composite Laminates
3.4. Establishment of the FE Model of Curing Process for Auxiliary Materials-Laminates-Mold
4. Sensitivity Analysis Theory
4.1. Sobol’s Method
4.1.1. Sobol’s Sensitivity Indices
4.1.2. Definition of the Output Variable
4.2. Selection of Parameters and Ranges
- Autoclave Heat Transfer and CHTC: Influencing Factors and Analysis
- 2.
- Curing Reaction and Heat Release in Composite Laminates
- 3.
- Frame Mold Configuration and Material Selection
- 4.
- Auxiliary Materials
5. Results and Discussion
5.1. Sensitivity Indices of Parameters
5.2. Impacts of Parameter Variation Range on Sensitivity Indices
5.2.1. Influence of TAL and TCL Range on Sensitivity Indices
5.2.2. Influence of CHTC Range on Sensitivity Indices
6. Conclusions
- (1)
- The sensitivity order of the temperature of the mold surface for the five parameters is CHTC > MMT > TMF > TCL > TAL. In addition, the mold surface temperature is mostly influenced by CHTC, MMT, and TMF. The other parameters, TCL and TAL, have negligible or minor influence on the mold surface temperature and the thermal response is dominated by the mold.
- (2)
- The results of the sensitivity indices for different ranges of TAL and TCL infer a negligible effect on the sensitivity indices and rankings of the parameters. However, the sensitivity indices and rankings of the parameters are significantly dependent on the different ranges of CHTC. Although variations in the ranges of parameters can affect the sensitivity indices and rankings, but cannot change the fact that CHTC, MMT, and TMF play a decisive role in influencing mold surface temperature. The reason for this is that the sum of first-order sensitivity indices of these three parameters accounts for over 97.3%.
- (3)
- Based on an understanding of the impact of various CHTC ranges on sensitivity indices, a mold design strategy can be outlined: it is advisable to prioritize optimizing the mold substructure design before finalizing the mold material.
- (4)
- The analysis reveals the individual effects of each parameter and its interactions with other parameters. The individual effects of each parameter contribute to a significant portion (78.1%) of the variation in mold surface temperature. This implies that the individual effect of each parameter has a more important effect on mold surface temperature, while the effects of interactions among parameters on mold surface temperature are low and can be ignored. Therefore, when optimizing and regulating the uniformity of mold surface temperature distribution, it is crucial to focus on adjusting and optimizing the individual parameters.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pusatcioglu, S.Y.; Hassler, J.C.; Fricke, A.L.; McGee, H.A., Jr. Effect of temperature gradients on cure and stress gradients in thick thermoset castings. J. Appl. Polym. Sci. 1980, 25, 381–393. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhu, W.; Xu, Q.; Ke, Y. Numerical investigation of the effect of thermal gradients on curing performance of autoclaved laminates. J. Compos. Mater. 2020, 54, 127–138. [Google Scholar] [CrossRef]
- Zhang, D.; Zhan, L.; Guan, C.; Guo, J.; Ma, B.; Dai, G.; Yao, S. Optimization of Vibration Pretreatment Microwave Curing in Composite Laminate Molding Process. Polymers 2023, 15, 296. [Google Scholar] [CrossRef] [PubMed]
- Kluge, N.E.J.; Lundström, T.S.; Ljung, A.L.; Westerberg, L.G.; Nyman, T. An experimental study of temperature distribution in an autoclave. J. Reinf. Plast. Compos. 2016, 35, 566–578. [Google Scholar] [CrossRef]
- Yiming, Z.; Luling, A.; Haihua, K.; Yidong, B. Study on Improvement of Temperature Field Uniformity of Composite Mold. Aeronaut. Manuf. Technol. 2018, 61, 84–88. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhu, W.; Xu, Q.; Ke, Y. Design optimization of molds for autoclave process of composite manufacturing. J. Reinf. Plast. Compos. 2017, 36, 1564–1576. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, W.; Wang, Q.; Xu, Q.; Ke, Y. A heat-balance method for autoclave process of composite manufacturing. J. Compos. Mater. 2019, 53, 641–652. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Wang, L.; Xu, Q.; Ke, Y. A manta-ray-inspired bionic curing mold for autoclave process of composite manufacturing. J. Reinf. Plast. Compos. 2023, 42, 17–25. [Google Scholar] [CrossRef]
- Yue, B.; Xu, Y.; Zhang, W. A Novel Topology Optimization of the Frame Mold for Composite Autoclave Process. Appl. Compos. Mater. 2022, 29, 2343–2365. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, B.; Luo, L.; Lin, T.; Xue, X. Influence of mold and heat transfer fluid materials on the temperature distribution of large framed molds in autoclave process. Materials 2021, 14, 4311. [Google Scholar] [CrossRef]
- Zobeiry, N.; Park, J.; Poursartip, A. An infrared thermography-based method for the evaluation of the thermal response of tooling for composites manufacturing. J. Compos. Mater. 2019, 53, 1277–1290. [Google Scholar] [CrossRef]
- Park, J.; Zobeiry, N.; Poursartip, A. Tooling materials and their effect on surface thermal gradients. In Proceedings of the International SAMPE Technical Conference, Seattle, WA, USA, 22–26 May 2017; pp. 2554–2568. [Google Scholar]
- Xie, G.N.; Liu, J.; Zang, W.H.; Lorenzini, G.; Biserni, C. Simulation and improvement of temperature distributions of a framed mould during the autoclave composite curing process. J. Eng. Thermophys. 2013, 22, 43–61. [Google Scholar] [CrossRef]
- Weber, T.A.; Arent, J.C.; Steffens, L.; Balvers, J.M.; Duhovic, M. Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation. J. Compos. Mater. 2017, 51, 1753–1767. [Google Scholar] [CrossRef]
- Rasekh, A. Efficient Methods for Non-Linear Thermochemical Analysis of Composite Structures Undergoing Autoclave Processing. Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada, 2007. [Google Scholar] [CrossRef]
- Cao, X.; Su, S.; Leng, H.; Liu, B. Global Sensitivity Analysis of Parameters in the ENSO model Based on Sobol’Method. J. Coast. Res. 2020, 99, 340–345. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Wang, S.; Li, Y.; Tu, J.; Cai, W. Sobol sensitivity analysis for governing variables in design of a plate-fin heat exchanger with serrated fins. Int. J. Heat Mass Transf. 2017, 115, 871–881. [Google Scholar] [CrossRef]
- Li, H.S.; Gu, R.J.; Zhao, X. Global sensitivity analysis of load distribution and displacement in multi-bolt composite joints. Compos. Part B Eng. 2017, 116, 200–210. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Liu, B. Sensitivity Analysis and Multi-Objective Optimization Strategy of the Curing Profile for Autoclave Processed Thick Composite Laminates. Polymers 2023, 15, 2437. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Fu, W. Utilizing the Sobol’Sensitivity Analysis Method to Address the Multi-Objective Operation Model of Reservoirs. Water 2023, 15, 3795. [Google Scholar] [CrossRef]
- Xu, P.; Yan, D.; Liu, W.; Sun, K.; Kong, J.; Dong, L. Numerical Simulation Study of the Curing Process of Large Thickness Composits Laminate. Aeronaut. Manuf. Technol. 2017, 60, 99–102. (In Chinese) [Google Scholar] [CrossRef]
- Hou, J.; Ye, J.; Wang, C.; Mi, Y.; Zhang, B. Measurement of thermal conductivity during curing process of carbon fiber/epoxy prepreg. Acta Mater. Compos. Sin. 2012, 29, 23–28. (In Chinese) [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley & Sons.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fisher, A.; Levy, A.; Kratz, J. Effects of heat transfer coefficient variations on composite curing. J. Compos. Mater. 2023, 57, 363–376. [Google Scholar] [CrossRef]
- Zhu, J.; Frerich, T.; Dimassi, A.; Koerdt, M.; Herrmann, A.S. Experimental validation of a quasi-transient coupling approach for the modeling of heat transfer in autoclave processing. J. Compos. Mater. 2022, 56, 797–810. [Google Scholar] [CrossRef]
- Yi, S.; Hilton, H.H. Effects of thermo-mechanical properties of composites on viscosity, temperature and degree of cure in thick thermosetting composite laminates during curing process. J. Compos. Mater. 1998, 32, 600–622. [Google Scholar] [CrossRef]
- Niu, M.C. Composite Airframe Structures; Hong Kong Conmilit Press Limited: Hong Kong, China, 2008. [Google Scholar]
- Xie, G.; Liu, J.; Zhang, W.; Sunden, B. Simulation and thermal analysis on temperature fields during composite curing process in autoclave technology. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; American Society of Mechanical Engineers: New York, NY, USA, 2013; Volume 7, pp. 1–9. [Google Scholar] [CrossRef]
- Huang, P.; Wen, S.; Su, C.; Chen, S. Influence of process factors for curing temperature field on fiber-reinforced resin matrix composites. Fiber Reinf. Plast./Compos. 2019, 33–38. (In Chinese) [Google Scholar] [CrossRef]
- Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 2002, 145, 280–297. [Google Scholar] [CrossRef]
- Massmann, C.; Holzmann, H. Analysis of the behavior of a rainfall–runoff model using three global sensitivity analysis methods evaluated at different temporal scales. J. Hydrol. 2012, 475, 97–110. [Google Scholar] [CrossRef]
- Gamerith, V.; Neumann, M.B.; Muschalla, D. Applying global sensitivity analysis to the modelling of flow and water quality in sewers. Water Res. 2013, 47, 4600–4611. [Google Scholar] [CrossRef]
Materials | A/(1/s) | E (J/mol) | m | n | QR (J/g) |
---|---|---|---|---|---|
X850 | 67,342.89 | 67,198.43 | 0.2857 | 1.2373 | 124.89 |
132.12 | |||||
106.07 | |||||
106.63 | |||||
126.36 |
Parameters | Value |
---|---|
Cp/(J/(kg·K)) | −1.082 + 0.00502T − 0.0956α − 2.422 × 10−6 T2 − 0.0161α2 |
k11/(W/(m·K)) | −1.875 + 0.00955T − 0.232α − 5.672 × 10−6 T2 − 0.0725α2 |
k22, k33/(W/(m·K)) | −0.3 + 0.00141T + 0.0381α + 3.588 × 10−6 T2 − 0.354α2 |
ρc/(kg/m3) | 1.57 × 103 |
Materials | Thermal Conductivity /(W/m/K) | Density /(103 kg/m3) | Specific Heat /(J/kg/K) | Code |
---|---|---|---|---|
Graphite | 57.7 | 1.78 | 1046.7 | 1 |
Aluminum | 201.2 | 2.7 | 963 | 2 |
Steel | 50.5 | 7.86 | 460.5 | 3 |
Nickel | 72.1 | 8.9 | 460.5 | 4 |
Carbon Fiber/Epoxy | 3.46–6.06 | 1.5 | 1046.7 | 5 |
Glass Fiber/Epoxy | 3.17–4.33 | 1.9 | 1256 | 6 |
Ceramic | 1.44–11.54 | 2.75 | 3516.9–6280.2 | 7 |
Auxiliary Materials | 0.12 | 0.88 | 802 | / |
Parameter’s Number | Parameter’s Name | Parameter’s Notation | Unit | Range | Type |
---|---|---|---|---|---|
1 | TAL | δ1 | mm | [1, 7] | Continuous |
2 | TCL | δ2 | mm | [1, 20] | Continuous |
3 | TMF | δ3 | mm | [8, 25] | Continuous |
4 | MMT | ξ | / | 1, …, 7 | Discrete |
5 | CHTC | h | W/m2/K | [10, 300] | Continuous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhan, L.; Yang, Y.; Xu, Y. Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing. Polymers 2024, 16, 705. https://doi.org/10.3390/polym16050705
He J, Zhan L, Yang Y, Xu Y. Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing. Polymers. 2024; 16(5):705. https://doi.org/10.3390/polym16050705
Chicago/Turabian StyleHe, Jiayang, Lihua Zhan, Youliang Yang, and Yongqian Xu. 2024. "Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing" Polymers 16, no. 5: 705. https://doi.org/10.3390/polym16050705
APA StyleHe, J., Zhan, L., Yang, Y., & Xu, Y. (2024). Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing. Polymers, 16(5), 705. https://doi.org/10.3390/polym16050705