Viability Study of Serra da Estrela Dog Wool to Produce Green Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Fibers
- Serra da Estrela dog wool
- Fiberglass
2.1.2. Resins
2.2. Methods
2.2.1. Fiber Characterization
- X-ray Diffraction (X-RD)
- Scanning Electron Microscope (SEM)
- Optical wettability test of Serra da Estrela dog wool fibers
2.2.2. Chemical Treatments of Serra da Estrela Dog Wool Fibers
- Treatment with Polyvinyl Alcohol (PVA)
- Treatment with Sodium Hydroxide (NaOH)
2.2.3. Production of Composite Plates
2.2.4. Mechanical Tests
- Tensile tests
- Flexural tests
- Relaxation Tests
3. Results
3.1. Fiber Characterization
3.1.1. X-ray Diffraction (X-RD)
3.1.2. SEM
3.1.3. Optical Wettability Test of Serra da Estrela Dog Wool Fibers
3.2. Mechanical Tests
3.2.1. Tensile Tests
3.2.2. Flexural Tests
3.2.3. Relaxation Tests
4. Discussion
4.1. Fiber Characterization
4.1.1. X-ray Diffraction (X-RD)
4.1.2. SEM
4.1.3. Optical Wettability Test of Serra da Estrela Dog Wool Fibers
4.2. Mechanical Tests
4.2.1. Tensile Tests
4.2.2. Flexural Tests
4.2.3. Relaxation Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Ramachandran, A.; Mavinkere Rangappa, S.; Kushvaha, V.; Khan, A.; Seingchin, S.; Dhakal, H.N. Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review. Macromol. Rapid Commun. 2022, 43, 2100862. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Kessler, M.R. (Eds.) Handbook of Composites from Renewable Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Volume 6, ISBN 978-1-119-22362-7. [Google Scholar]
- Ahmad, H.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. A Comprehensive Review on Construction Applications and Life Cycle Sustainability of Natural Fiber Biocomposites. Sustainability 2022, 14, 15905. [Google Scholar] [CrossRef]
- Islam, M.Z.; Sarker, M.E.; Rahman, M.M.; Islam, M.R.; Ahmed, A.T.M.F.; Mahmud, M.S.; Syduzzaman, M. Green Composites from Natural Fibers and Biopolymers: A Review on Processing, Properties, and Applications. J. Reinf. Plast. Compos. 2022, 41, 526–557. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.-P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2014, 114, 1082–1115. [Google Scholar] [CrossRef]
- Baroncini, E.A.; Kumar Yadav, S.; Palmese, G.R.; Stanzione, J.F. Recent Advances in Bio-based Epoxy Resins and Bio-based Epoxy Curing Agents. J. Appl. Polym. Sci. 2016, 133, app.44103. [Google Scholar] [CrossRef]
- Ma, S.; Li, T.; Liu, X.; Zhu, J. Research Progress on Bio-Based Thermosetting Resins: Research Progress on Bio-Based Thermosetting Resins. Polym. Int. 2016, 65, 164–173. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Tania, I.S. Biocomposites Based on Natural Fibers and Polymers: A Review on Properties and Potential Applications. J. Reinf. Plast. Compos. 2022, 41, 705–742. [Google Scholar] [CrossRef]
- Ares-Elejoste, P.; Seoane-Rivero, R.; Gandarias, I.; Iturmendi, A.; Gondra, K. Sustainable Alternatives for the Development of Thermoset Composites with Low Environmental Impact. Polymers 2023, 15, 2939. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, G.; Hemanth Nadh, B.; Guduru, R.C.C. Evaluating Tensile Properties of Animal and Hybrid Fiber Reinforced Polyester Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012011. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Ramadoss, M.; Ramasamy, R.; Thangavel, K. Analysis of Physical and Thermal Properties of Chiengora Fibers. J. Nat. Fibers 2018, 17, 246–257. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114. [Google Scholar] [CrossRef]
- Suriani, M.J.; Zainudin, H.A.; Ilyas, R.A.; Petrů, M.; Sapuan, S.M.; Ruzaidi, C.M.; Mustapha, R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers 2021, 13, 1532. [Google Scholar] [CrossRef]
- Mann, G.S.; Azum, N.; Khan, A.; Rub, M.A.; Hassan, M.I.; Fatima, K.; Asiri, A.M. Green Composites Based on Animal Fiber and Their Applications for a Sustainable Future. Polymers 2023, 15, 601. [Google Scholar] [CrossRef]
- Hong, C.K.; Wool, R.P. Development of a Bio-Based Composite Material from Soybean Oil and Keratin Fibers. J. Appl. Polym. Sci. 2005, 95, 1524–1538. [Google Scholar] [CrossRef]
- FEDIAF|The Voice of the European Pet Food Industry. Available online: https://europeanpetfood.org/ (accessed on 21 April 2023).
- Lima, D.F.C.D.; Andreazzi, M.A.; Gonçalves, J.E.; Bello, J.R.; Mardigan, L.P.; Lizama, M.D.L.A.P.; Toma, A.I.; Souza, H.V.D. Estudo Sobre a Hidrólise Da α-Queratina Presente No Pelo de Cachorro. RICA 2022, 13, 167–176. [Google Scholar] [CrossRef]
- Hu, N.; Wang, K.; Ma, H.; Pan, W.; Chen, Q. R&D on Glass Fiber Reinforced Epoxy Resin Composites for Superconducting Tokamak. SpringerPlus 2016, 5, 1564. [Google Scholar] [CrossRef] [PubMed]
- Terry, J.S.; Taylor, A.C. The Properties and Suitability of Commercial Bio-based Epoxies for Use in Fiber-reinforced Composites. J. Appl. Polym. Sci. 2021, 138, 50417. [Google Scholar] [CrossRef]
- Conzatti, L.; Giunco, F.; Stagnaro, P.; Capobianco, M.; Castellano, M.; Marsano, E. Polyester-Based Biocomposites Containing Wool Fibres. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1113–1119. [Google Scholar] [CrossRef]
- Claudivan da Silva, F.; Felgueiras, H.P.; Ladchumananandasivam, R.; Ubiragi, L.; Mendes, J.; de O. Souto Silva, K.K.; Zille, A. Dog Wool Microparticles/Polyurethane Composite for Thermal Insulation. Polymers 2020, 12, 1098. [Google Scholar] [CrossRef]
- ISO 527-1 (2019); Plastics—Determination of Tensile Properties—Part 1: General Principles. International Standard Organization: Geneva, Switzerland, 2019.
- ISO 527-4 (2023); Plastics—Determination of Tensile Properties—Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. International Standard Organization: Geneva, Switzerland, 2023.
- ISO 178 (2019); Plastics—Determination of Flexural Properties. International Standard Organization: Geneva, Switzerland, 2019.
- ASTM E328 (2021); Standard Test Methods for Stress Relaxation for Materials and Structures. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Rabiei, N.; Amirshahi, S.H.; Haghighat Kish, M. Description of Physical Aging Kinetics of Glassy Polymers by Interpretation of Parameters of the Kohlrausch-Williams-Watts Relaxation Function via Simulation. Phys. Rev. E 2019, 99, 032502. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.N.B.; Silva, M.P.; Santos, P.; Parente, J.M.; Valvez, S.; Bezazi, A. Mechanical Performance of an Optimized Cork Agglomerate Core-Glass Fibre Sandwich Panel. Compos. Struct. 2020, 245, 112375. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Silva, M.P.; Santos, P.; Parente, J.M.; Bezazi, A. Viscoelastic Behaviour of Composites with Epoxy Matrix Filled by Cork Powder. Compos. Struct. 2020, 234, 111669. [Google Scholar] [CrossRef]
- Santos, P.; Parente, J.P.; Valvez, S.; Silva, M.P.; Reis, P.N.B. Hybridization Effect on the Bending Properties of Flax Composites. Procedia Struct. Integr. 2020, 25, 370–377. [Google Scholar] [CrossRef]
- Liu, X.; Nie, Y.; Meng, X.; Zhang, Z.; Zhang, X.; Zhang, S. DBN-Based Ionic Liquids with High Capability for the Dissolution of Wool Keratin. RSC Adv. 2017, 7, 1981–1988. [Google Scholar] [CrossRef]
- Wang, D.; Yang, X.-H.; Tang, R.-C.; Yao, F. Extraction of Keratin from Rabbit Hair by a Deep Eutectic Solvent and Its Characterization. Polymers 2018, 10, 993. [Google Scholar] [CrossRef]
- Wu, M.; Shen, S.; Yang, X.; Tang, R. Preparation and Study on the Structure of Keratin/PVA Membrane Containing Wool Fibers. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 042030. [Google Scholar] [CrossRef]
- Haris, N.I.N.; Hassan, M.Z.; Ilyas, R.A.; Suhot, M.A.; Sapuan, S.M.; Dolah, R.; Mohammad, R.; Asyraf, M.R.M. Dynamic Mechanical Properties of Natural Fiber Reinforced Hybrid Polymer Composites: A Review. J. Mater. Res. Technol. 2022, 19, 167–182. [Google Scholar] [CrossRef]
- Murillo, M.; Sanchez, A.; Gil, A.; Araya-Letelier, G.; Burbano-Garcia, C.; Silva, Y.F. Use of animal fiber-reinforcement in construction materials: A review. Case Stud. Constr. Mater. 2024, 20, e02812. [Google Scholar] [CrossRef]
Resource | Related Chemicals | Functional Groups Where the Reaction to Produce the Bio-Based Products Occurs | Bio-Based Products |
---|---|---|---|
Carbohydrate | Itaconic acid | Carboxyl; c-c double bond | Epoxy resin; Polyester resin; Reactive polyester resin diluents |
Furfuryl amine | Furan | Benzoxazine; Epoxy resin | |
Isosorbide | Alcohols; Diheterocycles | Epoxy resin; Polyester resin; Healing agents | |
Lignin | Vanillin | Aldehyde | Benzoxazine; Epoxy resin |
Eugenol | c-c double bond | Benzoxazine; Epoxy resin | |
Guaiacol | c-c double bond | Reactive polyester resin diluents | |
Vegetable oils | Glyceride | Ester; R = Unsaturated aliphatic chain | Epoxy resin; Curing agents; Polyester resin; Reactive polyester resin diluents |
Cardanol | R = Unsaturated aliphatic chain | Benzoxazine; Epoxy resin |
Fiber | Density (g/cm3) | Tensile Strength (MPa) | Tensile Young’s Modulus (GPa) |
---|---|---|---|
Cotton | 1.5–1.6 | 287–800 | 5.5–13 |
Linen | 1.4 | 345–1830 | 27–80 |
Hemp | 1.4 | 550–1110 | 58–70 |
Sheep wool | 1.3 | 50–315 | 2.3–5 |
Silk | 1.3 | 100–1500 | 5–25 |
Feathers | 0.9 | 100–203 | 3–10 |
Properties of Type E-Glass Fiber | |
---|---|
Tensile strength of virgin fiber (MPa) | 3140 |
Young’s modulus (GPa) | 73 |
Density (g/cm3) | 2.54 |
Stretching (%) | 4.8 |
Softening point temperature (°C) | 850 |
SR GreenPoxy 56 + SD Surf Clear Hardener | SR8100 + SD 3304 Hardener | |
---|---|---|
Tensile | ||
Young’s modulus (GPa) | 3.3 | 3.5 |
Maximum strength (MPa) | 49 | 74 |
Tensile strength (MPa) | 48 | 74 |
Strain at max. load (%) | 1.6 | 3.1 |
Strain at failure (%) | 1.6 | 3.1 |
Flexural | ||
Young’s modulus (GPa) | 3.4 | 3.1 |
Flexural strength (MPa) | 114 | 136 |
Strain at max. load (%) | 4.2 | 5.7 |
Strain at failure (%) | 5.5 | 9.9 |
Isostress Condition (GPa) | Isostrain Condition (GPa) | Experimentally Obtained (GPa) | |
---|---|---|---|
EcFg | 4.23 | 22.67 | 3.50 |
EgFwot | 2.59 | 2.69 | 0.56 |
EgFNaOH | 0.60 | ||
EgFPVA | 0.33 |
Toughness (J/mm3) | |
---|---|
EcFg | 3.25 |
EgFwot | 0.65 |
EgFNaOH | 0.84 |
EgFPVA | 0.24 |
KWW Model Parameters | ||
---|---|---|
Composites | τ | β |
EcFg | 799,655 | 0.1773 |
EgFwot | 3469.26 | 0.1829 |
EgFNaOH | 2220.01 | 0.1929 |
EgFPVA | 6442.52 | 0.2386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.S.; Fiadeiro, P.T.; Vieira, A.C.; Vieira, J.C. Viability Study of Serra da Estrela Dog Wool to Produce Green Composites. Polymers 2024, 16, 718. https://doi.org/10.3390/polym16050718
Gomes AS, Fiadeiro PT, Vieira AC, Vieira JC. Viability Study of Serra da Estrela Dog Wool to Produce Green Composites. Polymers. 2024; 16(5):718. https://doi.org/10.3390/polym16050718
Chicago/Turabian StyleGomes, Alexandra Soledade, Paulo Torrão Fiadeiro, André Costa Vieira, and Joana Costa Vieira. 2024. "Viability Study of Serra da Estrela Dog Wool to Produce Green Composites" Polymers 16, no. 5: 718. https://doi.org/10.3390/polym16050718
APA StyleGomes, A. S., Fiadeiro, P. T., Vieira, A. C., & Vieira, J. C. (2024). Viability Study of Serra da Estrela Dog Wool to Produce Green Composites. Polymers, 16(5), 718. https://doi.org/10.3390/polym16050718