Coaxial Electrospun Porous Core–Shell Nanofibrous Membranes for Photodegradation of Organic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.2.1. Photocatalytic NPs
2.2.2. Nanofiber Membranes Supported by Photocatalytic NPs
2.3. Characterization
2.3.1. Morphology and Structure
2.3.2. Physical and Chemical State
2.3.3. Photocatalytic Performance Testing
2.3.4. Analysis of Photocatalytic Mechanism
3. Results and Discussion
3.1. Photocatalytic Nanoparticles
3.2. Loading Photocatalytic NPs Onto Electrospun Nanofibers
3.3. Photocatalytic Performance of the Nanofiber Membranes
3.4. Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bobde, P.; Patel, R.K.; Panchal, D.; Sharma, A.; Sharma, A.K.; Dhodapkar, R.S.; Pal, S. Utilization of layered double hydroxides (LDHs) and their derivatives as photocatalysts for degradation of organic pollutants. Environ. Sci. Pollut. Res. 2021, 28, 59551–59569. [Google Scholar] [CrossRef]
- Madhavan, J.; Theerthagiri, J.; Balaji, D.; Sunitha, S.; Choi, M.Y.; Ashokkumar, M. Hybrid advanced oxidation processes involving ultrasound: An overview. Molecules 2019, 24, 3341. [Google Scholar] [CrossRef]
- Liu, T.; Yang, G.; Wang, W.; Wang, C.; Wang, M.; Sun, X.; Xu, P.; Zhang, J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting. Environ. Res. 2020, 188, 109741. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, D. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841. [Google Scholar] [CrossRef]
- Li, Y.; Cao, T.; Mei, Z.; Li, X.; Sun, D. Separating type I heterojunction of NaBi(MoO4)2/Bi2MoO6 by TiO2 nanofibers for enhanced visible-photocatalysis. Chem. Phys. 2020, 533, 110696. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Z.; Jia, J.; Robertson, J.; Guo, Y. 2D WSe2/MoSi2N4 type-II heterojunction with improved carrier separation and recombination for photocatalytic water splitting. Appl. Surf. Sci. 2023, 611, 155674. [Google Scholar] [CrossRef]
- Li, J.; Feng, J.; Guo, X.; Fang, H.; Chen, J.; Ma, C.; Li, R.; Wang, Y.; Rui, Z. Defect-band bridge photothermally activates type III heterojunction for CO2 reduction and typical vocs oxidation. Appl. Catal. B 2022, 309, 121248. [Google Scholar] [CrossRef]
- Yang, Q.; Tan, G.; Zhang, B.; Feng, S.; Bi, Y.; Wang, Z.; Xia, A.; Ren, H.; Liu, W. Cs0.33WO3/(t-m)-BiVO4 double Z-type heterojunction photothermal synergistic enhanced full-spectrum degradation of antibiotics. Chem. Eng. J. 2023, 458, 141378. [Google Scholar] [CrossRef]
- Li, D.; Xu, K.; Zhang, C. Improvement of photocatalytic performance by building multiple heterojunction structures of anatase-rutile/BiOI composite fibers. Nanomaterials 2022, 12, 3906. [Google Scholar] [CrossRef]
- Yang, P.; Wu, X.; Zhang, J.; Ma, Q.; Cheng, J.; Wang, H.; He, C.; Li, Z. Synthesis of C3+ alcohols through ethanol condensation and carbon-carbon coupling of ethanol with CO2. Appl. Catal. A 2023, 653, 119036. [Google Scholar] [CrossRef]
- McCormick, W.J.; McCrudden, D.; Skillen, N.; Robertson, P.K.J. Electrochemical monitoring of the photocatalytic degradation of the insecticide emamectin benzoate using TiO2 and ZnO materials. Appl. Catal. A 2023, 660, 119201. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Long, W.; Wang, Q.; Yu, X.; Li, S. Highly enhanced photodegradation of emerging pollutants by Ag/AgCl/Ta2O5-x mesocrystals. Sep. Purif. Technol. 2021, 279, 119733. [Google Scholar] [CrossRef]
- Mohsen, P.; Shahnaz, G.; Sima, H.; Baker, R.; Zahra, G.N.S.K.; Zahra, S.; Wang, C. Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation. Appl. Catal. A 2022, 643, 118794. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, W.; Lu, M.; Guo, Z.; Li, C.; Wang, W. Novel AgCl nanotubes/BiOCl nanosheets composite with improved adsorption capacity and photocatalytic performance. J. Alloys Compd. 2019, 773, 1146–1153. [Google Scholar] [CrossRef]
- Cai, A.; Guo, A.; Du, L.; Qi, Y.; Wang, X. Leaf-templated synthesis of hierarchical AgCl-Ag-ZnO composites with enhanced visible-light photocatalytic activity. Mater. Res. Bull. 2018, 103, 225–233. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, M.; Wang, P.; Xu, X.; Liu, Y.; Yu, D. Ingenious construction of Ni(DMG)2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129561. [Google Scholar] [CrossRef]
- Qi, X.; Zhu, Y.; Song, L.; Peng, G.; Qu, W.; Xiong, J. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts. Appl. Catal. A 2023, 656, 119130. [Google Scholar] [CrossRef]
- Yu, D.; Li, J.; Zhang, M.; Williams, G.R. High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem. Comm. 2017, 53, 4542–4545. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kharaghani, D.; Nishino, M.; Song, K.H.; Lee, J.S.; Kim, I.S. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int. J. Pharm. 2017, 531, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Asare, K.; Hasan, M.F.; Shahbazi, A.; Zhang, L. A comparative study of porous and hollow carbon nanofibrous structures from electrospinning for supercapacitor electrode material development. Surf. Interfaces 2021, 26, 101386. [Google Scholar] [CrossRef]
- Sun, R.; Yan, G.; Zhang, X.; Li, Z.; Chen, J.; Wang, L.; Wu, Y.; Wang, Y.; Li, H. Fe-ZIF-derived hollow porous carbon nanofibers for electromagnetic wave absorption. Chem. Eng. J. 2023, 455, 140608. [Google Scholar] [CrossRef]
- Kossyvaki, D.; Barbetta, A.; Contardi, M.; Bustreo, M.; Dziza, K.; Lauciello, S.; Athanassiou, A.; Fragouli, D. Highly porous curcumin-loaded polymer mats for rapid detection of volatile amines. ACS Appl. Polym. Mater. 2022, 4, 4464–4475. [Google Scholar] [CrossRef]
- El-Samak, A.A.; Ponnamma, D.; Hassan, M.K.; Al-Maadeed, M.A. A stable porous vessel for photocatalytic degradation of Azocarmine G dye. Microporous Mesoporous Mater. 2022, 341, 111994. [Google Scholar] [CrossRef]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.; Shi, X.; Deng, H. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar] [CrossRef]
- Rong, F.; Lu, Q.; Mai, H.; Chen, D.; Caruso, R.A. Hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures featuring readily accessible active sites and enhanced photocatalytic effectiveness for antibiotic degradation in water. ACS Appl. Mater. Interfaces 2021, 13, 21138–21148. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Chen, W.; Zhao, P.; Yang, Y.; Yu, D. Electrospun porous nanofibers: Pore-forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers 2022, 14, 3990. [Google Scholar] [CrossRef]
- Tian, X.; Wu, H.; Hu, X.; Wang, Z.; Ren, C.; Cheng, Z.; Dou, L.; Lin, Y. Enhanced photocatalytic performance of ZnO/AgCl composites prepared by high-energy mechanical ball milling. New J. Chem. 2022, 46, 9155–9171. [Google Scholar] [CrossRef]
- Hou, W.; Guo, H.; Wu, M.; Wang, L. Amide covalent bonding engineering in heterojunction for efficient solar-driven CO2 reduction. ACS Nano 2023, 17, 20560–20569. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2022, 429, 132345. [Google Scholar] [CrossRef]
- Feng, Z.; Yu, J.; Sun, D.; Wang, T. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance. J. Colloid Interface Sci. 2016, 480, 184–190. [Google Scholar] [CrossRef]
- Jamnongkan, T.; Intaramongkol, N.; Kanjanaphong, N.; Ponjaroen, K.; Sriwiset, W.; Mongkholrattanasit, R.; Wongwachirakorn, P.; Lin, K.Y.A.; Huang, C.F. Study of the enhancements of porous structures of activated carbons produced from durian husk wastes. Sustainability 2022, 14, 5896. [Google Scholar] [CrossRef]
- Dong, T.; Wang, P.; Yang, P. Synthesis of magnetic Ag3PO4/Ag/NiFe2O4 composites towards super photocatalysis and magnetic separation. Int. J. Hydrogen Energy 2018, 43, 20607–20615. [Google Scholar] [CrossRef]
- Brites, M.D.; Ceron, A.A.; Costa, S.M.; Oliveira, R.C.; Ferraz, H.G.; Catalani, L.H.; Costa, S.A. Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique. Enzyme Microb. Technol. 2020, 132, 109384. [Google Scholar] [CrossRef]
- Erdal, N.B.; Hakkarainen, M. Construction of bioactive and reinforced bioresorbable nanocomposites by reduced nano-graphene oxide carbon dots. Biomacromolecules 2018, 19, 1074–1081. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, E.; Xu, S.; Li, Z.; Fakhri, A.; Gupta, V.K. Production of metal oxides nanoparticles based on poly-alanine/chitosan/reduced graphene oxide for photocatalysis degradation, anti-pathogenic bacterial and antioxidant studies. Int. J. Biol. Macromol. 2020, 164, 1584–1591. [Google Scholar] [CrossRef]
- Mou, H.; Song, C.; Zhou, Y.; Zhang, B.; Wang, D. Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 2018, 221, 565–573. [Google Scholar] [CrossRef]
- Shi, W.; Ren, H.; Huang, X.; Li, M.; Tang, Y.; Guo, F. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep. Purif. Technol. 2020, 237, 116477. [Google Scholar] [CrossRef]
- Sang, Y.; Cao, X.; Dai, G.; Wang, L.; Peng, Y.; Geng, B. Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr (VI). J. Hazard. Mater. 2020, 381, 120942. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, G.; Chu, X.; Yan, G. Visible-light-driven photocatalytic removal of Cr (VI) and rhodamine B by monoclinic BiVO4-diatomite composite. Mater. Res. Express. 2019, 6, 115904. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, H.; Li, H.; Xia, J.; Liu, C.; Liu, L. Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J. Alloys Compd. 2011, 509, 3286–3292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhou, S.; Cao, X.; Lv, H.; Liang, Z.; Zhang, R.; Ye, F.; Yu, D. Coaxial Electrospun Porous Core–Shell Nanofibrous Membranes for Photodegradation of Organic Dyes. Polymers 2024, 16, 754. https://doi.org/10.3390/polym16060754
Yang Y, Zhou S, Cao X, Lv H, Liang Z, Zhang R, Ye F, Yu D. Coaxial Electrospun Porous Core–Shell Nanofibrous Membranes for Photodegradation of Organic Dyes. Polymers. 2024; 16(6):754. https://doi.org/10.3390/polym16060754
Chicago/Turabian StyleYang, Yaoyao, Shengwei Zhou, Xianyang Cao, He Lv, Zhiyuan Liang, Rui Zhang, Fujia Ye, and Dengguang Yu. 2024. "Coaxial Electrospun Porous Core–Shell Nanofibrous Membranes for Photodegradation of Organic Dyes" Polymers 16, no. 6: 754. https://doi.org/10.3390/polym16060754
APA StyleYang, Y., Zhou, S., Cao, X., Lv, H., Liang, Z., Zhang, R., Ye, F., & Yu, D. (2024). Coaxial Electrospun Porous Core–Shell Nanofibrous Membranes for Photodegradation of Organic Dyes. Polymers, 16(6), 754. https://doi.org/10.3390/polym16060754