Synthesis and Application of Polymer SXFA in the Detection of Organophosphine Agents with a SAW Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Experimental Methods
2.2.1. Mechanism of Interaction between Polymer and Gas Molecules
2.2.2. Synthesis Route of Hexafluoro-2-hydroxyisopropyl Polysiloxane
2.2.3. Preparation of SAW-SXFA Sensor and Its Detection of Organophosphine Agents
3. Results and Discussions
3.1. Infrared Spectroscopy Characterization and Analysis of SXFA Material
3.2. SEM Performance
3.3. Detection of Organophosphorus Agents
3.3.1. Selective Analysis of SAW-SXFA Sensor
3.3.2. Analysis of Response of SAW-SXFA Sensor
3.3.3. Detection Limit of SAW-SXFA Sensor
3.3.4. Reproducibility Study of SAW-SXFA Sensor
3.3.5. Interference Gas Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Dual-use Research Statement
- ∅
- Explanation of Potential Risks: Our paper examines the performance of a SAW sensor using SXFA as a film material. This research is limited to providing some theoretical and experimental support for the development of impact dynamics only and does not pose a threat to public health or national security.
- ∅
- Evaluation of Benefits to the General Public: Our research is limited to the academic field, and it is beneficial for the development of material science. There is no risk to the general public.
- ∅
- Compliance with Laws: As an ethical responsibility, we strictly adhere to relevant national and international laws about dual-use research. And we have considered and adhered to these regulations in our paper.
References
- Abu-Qare, A.W.; Abou-Donia, M.B. Sarin: Health effects, metabolism, and methods of analysis. Food Chem. Toxicol. 2002, 40, 1327–1333. [Google Scholar] [CrossRef]
- Lee, E.C. Clinical manifestations of sarin nerve gas exposure. JAMA-J. Am. Med. Assoc. 2003, 290, 659–662. [Google Scholar] [CrossRef]
- Tokuda, Y.; Kikuchi, M.; Takahashi, O.; Stein, G.H. Prehospital management of sarin nerve gas terrorism in urban settings: 10 years of progress after the Tokyo subway sarin attack. Resuscitation 2006, 68, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Kim, D.; Yang, H.; Lee, M.; Kim, S.O.; Ko, H.J.; Hong, S.; Park, T.H. Olfactory receptor-based CNT-FET sensor for the detection of DMMP as a simulant of sarin. Sens. Actuators B Chem. 2022, 354, 131188. [Google Scholar] [CrossRef]
- Hamel, M.; Hamoniaux, J.; Rocha, L.; Normand, S. Ppb detection of Sarin surrogate in liquid solutions. Chem. Biol. Radiol. Nucl. Explos. (CBRNE) Sens. XIV 2013, 8710, 137–143. [Google Scholar]
- O’Neill, H.J.; Brubaker, K.L.; Schneider, J.F.; Sytsma, L.F.; Kimmell, T.A. Development of an analytical methodology for sarin (GB) and soman (GD) in various military-related-wastes. J. Chromatogr. A 2002, 962, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Maziejuk, M.; Ceremuga, M.; Szyposzynska, M.; Sikora, T.; Zalewska, A. Identification of organophosphate nerve agents by the DMS detector. Sens. Actuators B Chem. 2015, 213, 368–374. [Google Scholar] [CrossRef]
- Black, R.M.; Clarke, R.J.; Read, R.W.; Reid, M.T.J. Application of gas-chromatography mass-spectrometry and Gas-chromatography tandem mass-spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulfur mustard and their degradation products. J. Chromatogr. A 1994, 662, 301–321. [Google Scholar] [CrossRef] [PubMed]
- William, H.K. Pizoelectric Sorption Detector. Anal. Chem. 1964, 36, 1735–1739. [Google Scholar]
- Stevenson, A.C.; Mehta, H.M.; Sethi, R.S.; Cheran, L.E.; Thompson, M.; Davies, I.; Lowe, C.R. Gigahertz surface acoustic wave probe for chemical analysis. Analyst 2001, 126, 1619–1624. [Google Scholar] [CrossRef]
- Fahim, F.; Mainuddin, M.; Mittal, U.; Kumar, J.; Nimal, A.T. Novel SAW CWA Detector Using Temperature Programmed Desorption. IEEE Sens. J. 2021, 21, 2915–5922. [Google Scholar] [CrossRef]
- Raj, V.B.; Singh, H.; Nimal, A.T.; Sharma, M.U.; Gupta, V. Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents. Sens. Actuators B Chem. 2013, 178, 647. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, G.; Guo, T.; Liu, X.; Liu, X.; Zhang, C.; Yang, J.; Cao, B.; Zhang, C.; Wang, W. Environmental characteristics of surface acoustic wave devices for sensing organophosphorus vapor. Sens. Actuators B Chem. 2020, 315, 127986. [Google Scholar] [CrossRef]
- Pan, Y.; Qin, M.; Wang, P.; Yang, L.; Zhang, L.; Yan, C.; Zhang, C.; Wang, W. Interface and Sensitive Characteristics of the Viscoelastic Film Used in a Surface Acoustic Wave Gas Sensor. ACS Sens. 2022, 7, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Matatagui, D.; Martí, J.; Fernández, M.J.; Fontecha, J.L.; Gutiérrez, J.; Gràcia, I.; Cané, C.; Horrillo, M.C. Chemical warfare agents simulants detection with an optimized SAW sensor array. Sens. Actuators B Chem. 2011, 154, 199–205. [Google Scholar] [CrossRef]
- Lama, S.; Kim, J.; Ramesh, S.; Lee, Y.J.; Kim, J.; Kim, J.H. Highly Sensitive Hybrid Nanostructures for Dimethyl Methyl Phosphonate Detection. Micromachines 2021, 12, 648. [Google Scholar] [CrossRef] [PubMed]
- Lurz, F.; Ostertag, T.; Scheiner, B.; Weigel, R.; Koelpin, A. Reader Architectures for Wireless Surface Acoustic Wave Sensors. Sensors 2018, 18, 1734. [Google Scholar] [CrossRef]
- Palla-Papavlu, A.; Voicu, S.I.; Dinescu, M. Sensitive Materials and Coating Technologies for Surface Acoustic Wave Sensors. Chemosensors 2021, 9, 105. [Google Scholar] [CrossRef]
- Wen, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection. Sensors 2011, 11, 1526–1541. [Google Scholar]
- Liu, X.; Wang, W.; Zhang, Y.; Pan, Y.; Liang, Y.; Li, J. Enhanced Sensitivity of a Hydrogen Sulfide Sensor Based on Surface Acoustic Waves at Room Temperature. Sensors 2018, 18, 3796. [Google Scholar] [CrossRef]
- Grate, J.W. Hydrogen Bond Acidic Polymers for Surface Acoustic Wave Vapor Sensors and Arrays. Anal. Chem. 1999, 71, 1033–1040. [Google Scholar] [CrossRef]
- Abraham, M.H.; Andonian-Haftvan, J.; Du, C.M.; Diart, V.; Whiting, G.S.; Grate, J.W.; Andrew, M.R. Hydrogen bonding. Part 29. Characterization of 14 sorbent coatings for chemical microsensors using a new solvation equation. J. Chem. Soc. Perkin Trans. 1995, 2, 369–378. [Google Scholar] [CrossRef]
- Freudenberg, J.; Schickfus, M.V.; Hunklinger, S. A SAW immunosensor for operation in liquid using a SiO2 protective layer. Sens. Actuators B Chem. 2001, 76, 147–151. [Google Scholar] [CrossRef]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 17. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Kindlund, A.; Sundgren, H.; Lundstrm, I. Quartz crystal gas monitor with a gas concentrating stage. Sens. Actuators 1984, 6, 1–17. [Google Scholar] [CrossRef]
- Finklea, H.O.; Phillippi, M.A.; Lompert, E.; Grate, J.W. Highly sorbent films derived from ni(scn)2(4-picoline)4 for the detection of chlorinated and aromatic hydrocarbons with quartz crystal microbalance sensors. Anal. Chem. 1998, 70, 1268–1276. [Google Scholar] [CrossRef]
- Gregory, C.F.; Stephen, J.M. Materials characterization using surface acoustic wave devices. Appl. Spectrosc. Rev. 1991, 26, 73–149. [Google Scholar]
- Grate, J.W.; Wenzel, S.W.; White, R.M. Flexural plate wave device for chemical analysis. Anal. Chem. 1991, 63, 1552–1561. [Google Scholar] [CrossRef]
- Grate, J.W.; Klusty, M.; Mcgill, R.A.; Abraham, M.H.; Whiting, G.; Andonian-Haftvan, J. The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic wave vapor sensors. Anal. Chem. 1992, 64, 610–624. [Google Scholar] [CrossRef]
- Tascon, M.; Romero, L.M.; Acquaviva, A.; Keunchkarian, S.; Castells, C. Determinations of gas-liquid partition coefficients using capillary chromatographic columns. alkanols in squalane. J. Chromatogr. A 2013, 1294, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Rosés, M.; Poole, C.F.; Poole, S.K. Hydrogen bonding. 42. characterization of reversed-phase high-performance liquid chromatographic c18 stationary phases. J. Phys. Org. Chem. 2015, 10, 358–368. [Google Scholar] [CrossRef]
- Grate, J.W.; Patrash, S.J.; Abraham, M.H. Method for estimating polymer-coated acoustic wave vapor sensor responses. Anal. Chem. 1995, 67, 2162–2169. [Google Scholar] [CrossRef]
- Grate, J.W.; Kaganove, S.N.; Bhethanabotla, V.R. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors. Anal. Chem. 1998, 70, 199–203. [Google Scholar] [CrossRef]
Polymer | b/a | b/s | a/s | s/a | b + a + s | Dispersibility |
---|---|---|---|---|---|---|
SXFA | 6.07 | 7.08 | 1.17 | 0.86 | 5.55 | 0.13 |
Intensity (mg/m3) | Response (mV) | Recovery (mV) | Recovery Rate (%) |
---|---|---|---|
0.1 | 2.168 | 0.02 | 98 |
0.2 | 2.509 | 0.05 | 95 |
0.4 | 3.002 | 0.09 | 91 |
0.6 | 4.216 | 0.08 | 92 |
0.8 | 3.523 | 0.12 | 88 |
1.0 | 3.972 | 0.12 | 88 |
1.4 | 3.283 | 0.14 | 86 |
1.8 | 6.515 | 0.20 | 80 |
2.2 | 9.859 | 0.23 | 77 |
2.6 | 14.394 | 0.27 | 73 |
3.0 | 19.172 | 0.30 | 70 |
3. 4 | 27.605 | 0.35 | 65 |
Experiment No. | Response (mV) | Recovery (mV) |
---|---|---|
1 | 10.845 | 9.696 |
2 | 10.619 | 10.073 |
3 | 10.767 | 10.176 |
4 | 10.921 | 9.729 |
5 | 10.831 | 9.741 |
Average (mV) | 10.797 | 9.883 |
Standard Deviation (mV) | 0.11 | 0.22 |
Discrete Coefficient | 0.01 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Qin, M.; Guo, T.; Zhang, L.; Yang, J.; Pan, Y. Synthesis and Application of Polymer SXFA in the Detection of Organophosphine Agents with a SAW Sensor. Polymers 2024, 16, 784. https://doi.org/10.3390/polym16060784
Yan C, Qin M, Guo T, Zhang L, Yang J, Pan Y. Synthesis and Application of Polymer SXFA in the Detection of Organophosphine Agents with a SAW Sensor. Polymers. 2024; 16(6):784. https://doi.org/10.3390/polym16060784
Chicago/Turabian StyleYan, Cancan, Molin Qin, Tengxiao Guo, Lin Zhang, Junchao Yang, and Yong Pan. 2024. "Synthesis and Application of Polymer SXFA in the Detection of Organophosphine Agents with a SAW Sensor" Polymers 16, no. 6: 784. https://doi.org/10.3390/polym16060784
APA StyleYan, C., Qin, M., Guo, T., Zhang, L., Yang, J., & Pan, Y. (2024). Synthesis and Application of Polymer SXFA in the Detection of Organophosphine Agents with a SAW Sensor. Polymers, 16(6), 784. https://doi.org/10.3390/polym16060784