Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of P(AA-co-HAM)/NaNO3 GPE
2.2.2. Synthesis of P(AA-co-AM)/NaNO3 GPE
2.2.3. Preparation of Electrodes and Assembly of Supercapacitors
2.3. Characterization
3. Results and Discussion
3.1. Infrared Analysis
3.2. Mechanical Properties Analysis
3.3. Thermal Stability Analysis
3.4. Ionic Conductivity Analysis
3.5. Electrochemical Performances of Supercapacitors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Wang, J. Toward Emerging Sodium-Based Energy Storage Technologies: From Performance to Sustainability. Adv. Energy Mater. 2022, 12, 29. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, H.; Kumar, G.; Sharma, S.; Aneja, R.; Sharma, A.K.; Kumar, R.; Kumar, P. Progress and Challenges in Electrochemical Energy Storage Devices: Fabrication, Electrode Material, and Economic Aspects. Chem. Eng. J. 2023, 468, 1385–8947. [Google Scholar] [CrossRef]
- Evanko, B.; Boettcher, S.W.; Yoo, S.J.; Stucky, G.D. Redox-Enhanced Electrochemical Capacitors: Status, Opportunity, and Best Practices for Performance Evaluation. ACS Energy Lett. 2017, 2, 2581–2590. [Google Scholar] [CrossRef]
- Shin, S.J.; Gittins, J.W.; Balhatchet, C.J.; Walsh, A.; Forse, A.C. Metal–Organic Framework Supercapacitors: Challenges and Opportunities. Adv. Funct. Mater. 2023, 23, 11. [Google Scholar] [CrossRef]
- Salleh, N.A.; Kheawhom, S.; Hamid, N.A.A.; Rahiman, W.; Mohamad, A.A. Electrode Polymer Binders for Supercapacitor Applications: A review. J. Mater. Res. Technol. 2023, 23, 3470–3491. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Sheldon, B.W. Deformation and Stress in Electrode Materials for Li-ion Batteries. Prog. Mater. Sci. 2014, 63, 58–116. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Vellacheri, R.; Lei, Y. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors. Adv. Sci. 2017, 4, 10. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.S. Carbon-based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 9. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards Flexible Solid-state Supercapacitors for Smart and Wearable Electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef]
- Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small 2017, 14, 43. [Google Scholar] [CrossRef]
- Liu, Y.; He, K.; Chen, G.; Leow, W.R.; Chen, X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem. Rev. 2017, 117, 12893–12941. [Google Scholar] [CrossRef]
- Weng, W.; Chen, P.; He, S.; Sun, X.; Peng, H. Smart Electronic Textiles. Angew. Chem. Int. Ed. 2016, 55, 6140–6169. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, H.; Tang, Z.; Liu, Z.; Ruan, Z.; Ma, L.; Yang, Q.; Wang, D.; Zhi, C. Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Adv. Funct. Mater. 2018, 28, 48. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. A Self-healable and Highly Stretchable Supercapacitor Based on A Dual Crosslinked Polyelectrolyte. Nat. Commun. 2015, 6, 10310. [Google Scholar] [CrossRef] [PubMed]
- Ruano, G.; Iribarren, J.I.; Pérez-Madrigal, M.M.; Torras, J.; Alemán, C. Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers 2021, 13, 1337. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. Gel Polymer Electrolytes for Electrochemical Energy Storage. Adv. Energy Mater. 2017, 8, 7. [Google Scholar] [CrossRef]
- Chen, C.R.; Qin, H.; Cong, H.P.; Yu, S.H. A Highly Stretchable and Real-Time Healable Supercapacitor. Adv. Mater. 2019, 31, 19. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhang, T.; Li, H.-N.; Cong, H.-P.; Antonietti, M.; Yu, S.-H. Dynamic Au-Thiolate Interaction Induced Rapid Self-Healing Nanocomposite Hydrogels with Remarkable Mechanical Behaviors. Chem 2017, 3, 691–705. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Y.; Que, M. A Facile in Situ Approach to Ion Gel Based Polymer Electrolytes for Flexible Lithium Batteries. RSC Adv. 2017, 7, 54391. [Google Scholar] [CrossRef]
- Yu, D.; Li, X.; Xu, J. Safety Regulation of Gel Electrolytes in Electrochemical Energy Storage Devices. Sci. China Mater. 2019, 62, 1556–1573. [Google Scholar] [CrossRef]
- Yang, C.; Suo, Z. Hydrogel Ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Q.; Ran, F. All-natural Hydrogel Electrolytes Prepared by A Universal Strategy for Supercapacitors. New J. Chem. 2022, 46, 19523–19533. [Google Scholar] [CrossRef]
- Yang, H.; Ji, X.; Tan, Y.; Liu, Y.; Ran, F. Modified Supramolecular Carboxylated Chitosan as Hydrogel Electrolyte for Quasi-solid-state Supercapacitors. J. Power Sources 2019, 441, 227174. [Google Scholar] [CrossRef]
- Kamarulazam, F.; Bashir, S.; Hina, M.; Kumar, S.S.A.; Gunalan, S.; Ramesh, S.; Ramesh, K. Effect of Electrode Substrate and Poly(acrylamide) Hydrogel Electrolytes on the Electrochemical Performance of Supercapacitors. Ionics 2021, 27, 4507–4519. [Google Scholar] [CrossRef]
- Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C. The 100th Anniversary of the Four-point Probe Technique: The Role of Probe Geometries in Isotropic and Anisotropic Systems. J. Phys. Condens. Matter 2015, 27, 223201. [Google Scholar] [CrossRef]
- Kang, J.-H.; Lee, S.-H.; Ruh, H.; Yu, K.-M. Development of A Thickness Meter for Conductive Thin Films Using Four-Point Probe Method. J. Electr. Eng. Technol. 2021, 16, 2265–2273. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Sang, M.; Wang, X.; Zuo, D.; Xu, J.; Zhang, H. A Supramolecular Hydrogel Electrolyte for High-performance Supercapacitors. J. Energy Storage 2021, 33, 101931. [Google Scholar] [CrossRef]
- Niu, L.; Lei, L.; Xia, Z. Redispersible Polymer Powder Functionalized with NMA and its Adhesive Properties in Dry-mixed Coatings. J. Adhes. Sci. Technol. 2013, 27, 1432–1445. [Google Scholar] [CrossRef]
- Yi, X.; Xu, Z.; Liu, Y.; Guo, X.; Ou, M.; Xu, X. Highly Efficient Removal of Uranium(vi) From Wastewater by Polyacrylic Acid Hydrogels. RSC Adv. 2017, 7, 6278–6287. [Google Scholar] [CrossRef]
- Wei, C.; Yang, M.; Guo, Y.; Xu, W.; Gu, J.; Ou, M.; Xu, X. Highly Efficient Removal of Uranium(VI) from Aqueous Solutions by Poly(acrylic acid-co-acrylamide) Hydrogels. J. Radioanal. Nucl. Chem. 2018, 315, 211–221. [Google Scholar] [CrossRef]
- Zou, Y.; Huang, H.; Li, S.; Wang, J.; Zhang, Y. Synthesis of Supported Ag/AgCl Composite Materials and their Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2019, 376, 43–53. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Feng, J.; Xu, R.; Liu, X. Facile Preparation of Poly(acrylic acid–acrylamide) Hydrogels by Frontal Polymerization and Their Use in Removal of Cationic Dyes from Aqueous Solution. Desalination 2011, 280, 95–102. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Pan, F.; He, Q.; Zhang, Q. Solid Polymer Electrolytes Reinforced with Porous Polypropylene Separators for All-solid-state Supercapacitors. RSC Adv. 2023, 13, 34652. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N. Ionic Conductivity and Ionic Transport Mechanisms of Solid-state Lithium-ion Battery Electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Lu, N.; Na, R.; Li, L.; Zhang, C.; Chen, Z.; Zhang, S.; Luan, J.; Wang, G. Rational Design of Antifreezing Organohydrogel Electrolytes for Flexible Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 1944–1951. [Google Scholar] [CrossRef]
- Peng, H.; Lv, Y.; Wei, G.; Zhou, J.; Gao, X.; Sun, K.; Ma, G.; Lei, Z. A flexible and Self-healing Hydrogel Electrolyte for Smart Supercapacitor. J. Power Sources 2019, 431, 210–219. [Google Scholar] [CrossRef]
- Bu, X.; Su, L.; Dou, Q.; Lei, S.; Yan, X. A Low-cost “Water-in-salt” Electrolyte for A 2.3 V High-rate Carbon-based Supercapacitor. J. Mater. Chem. A 2019, 7, 7541–7547. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, A.; Tripathi, S. Structural, Electrical and Electrochemical Studies of Ionic Liquid-based Polymer Gel Electrolyte Using Magnesium Salt for Supercapacitor Application. J. Polym. Res. 2021, 28, 235. [Google Scholar] [CrossRef]
- Li, M.; Liang, Y.; He, J. Two-Pronged Strategy of Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing To Accelerate Wound Closure and Wound Healing. Chem. Mater. 2020, 32, 9937–9953. [Google Scholar] [CrossRef]
- Guo, X.; Li, S.; Chen, F. Performance Improvement of PVDF-HFP-Based Gel Polymer Electrolyte with the Dopant of Octavinyl-Polyhedral Oligomeric Silsesquioxane. Materials 2021, 14, 2701. [Google Scholar] [CrossRef]
- Huo, P.; Ni, S.; Hou, P. A Crosslinked Soybean Protein Isolate Gel Polymer Electrolyte Based on Neutral Aqueous Electrolyte for a High-Energy-Density Supercapacitor. Polymers 2019, 11, 863. [Google Scholar] [CrossRef]
- Yang, P.; Liu, L.; Li, L. Gel Polymer Electrolyte Based on Polyvinylidenefluorid-co-hexafluoropropylene and Ionic Liquid for Lithium Ion Battery. Electrochim. Acta 2014, 115, 454–460. [Google Scholar] [CrossRef]
- Singh, C.; Shukla, P.; Agrawal, S. Ion Transport Studies in PVA: NH4CH3COO Gel Polymer Electrolytes. High Perform. Polym. 2020, 32, 208–219. [Google Scholar] [CrossRef]
- Shabanov, N.S.; Rabadanov, K.S.; Gafurov, M.M.; Isaev, A.B.; Sobola, D.S.; Suleimanov, S.I.; Amirov, A.M.; Asvarov, A.S. Lignin-Based Gel Polymer Electrolyte for Cationic Conductivity. Polymers 2021, 13, 2306. [Google Scholar] [CrossRef]
- Soo, P.; Huang, B.; Jang, Y.I.; Chiang, Y.; Sadoway, D.; Mayes, A.M. Rubbery Block Copolymer Electrolytes for Solid-state Rechargeable Lithium Batteries. J. Electrochem. Soc. 1999, 146, 32. [Google Scholar] [CrossRef]
GPE | Resistivity (kΩ·cm) | Ionic Conductivity (S/cm) |
---|---|---|
P(AA-co-HAM/NaNO3) (0 day) | 0.050 | 2.00 × 10−2 |
P(AA-co-HAM/NaNO3) (7 days) | 0.051 | 1.96 × 10−2 |
P(AA-co-HAM/NaNO3) (14 days) | 0.055 | 1.82 × 10−2 |
P(AA-co-AM/NaNO3) (0 day) | 0.163 | 6.13 × 10−3 |
P(AA-co-AM/NaNO3) (7 days) | 0.168 | 5.95 × 10−3 |
P(AA-co-AM/NaNO3) (14 days) | 0.180 | 5.56 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Jiang, P.; Zhang, P.; Duan, N.; Liu, Q.; Qin, C. Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors. Polymers 2024, 16, 800. https://doi.org/10.3390/polym16060800
Shi L, Jiang P, Zhang P, Duan N, Liu Q, Qin C. Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors. Polymers. 2024; 16(6):800. https://doi.org/10.3390/polym16060800
Chicago/Turabian StyleShi, Lanxin, Pengfei Jiang, Pengxue Zhang, Nannan Duan, Qi Liu, and Chuanli Qin. 2024. "Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors" Polymers 16, no. 6: 800. https://doi.org/10.3390/polym16060800
APA StyleShi, L., Jiang, P., Zhang, P., Duan, N., Liu, Q., & Qin, C. (2024). Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors. Polymers, 16(6), 800. https://doi.org/10.3390/polym16060800