Evaluation of Functionalized Amberlite Type XAD7 Polymeric Resin with L-Valine Amino Acid Performance for Gallium Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization and Preparation of Adsorbents
2.1.1. Functionalization of Amberlite XAD 7 Resin with DL-Valine
2.1.2. Characterization of XAD7-Va Material
2.2. Effect of Adsorption Parameters on Ga(III) Recovery
2.2.1. pH Effect
2.2.2. Contact Time and Temperature Effect: Kinetic and Thermodynamic Studies
2.2.3. Ga(III) Initial Concentration Effect: Equilibrium Studies
2.2.4. Identifying the Most Appropriate Isotherm and Kinetic Models
2.3. Optimization Using the Taguchi Method
3. Results and Discussion
3.1. Characterization of the Adsorbents
3.1.1. Scanning Electron Microscopy, SEM
3.1.2. X-ray Energy-Dispersive Spectroscopy, EDX
3.1.3. Fourier Transform Infrared Spectroscopy, FTIR
3.1.4. Point Zero Charge, pHPZC
3.2. Effect of Gallium Recovery Parameters on Adsorption Process
3.2.1. pH Effect
3.2.2. Contact Time and Temperature Effects: Kinetic and Thermodynamic Adsorption Studies
3.2.3. Adsorption Equilibrium
3.3. Optimization Using Taguchi Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bahri, Z.; Rezai, B.; Kowsari, E. Selective separation of gallium from zinc using flotation: Effect of solution pH value and the separation mechanism. Miner. Eng. 2016, 86, 104–113. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y.; Liu, X.; Zhao, J.; Wang, J.; Wu, G.; Liu, J. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia. Sci. China Earth Sci. 2011, 54, 1053–1068. [Google Scholar] [CrossRef]
- Hassanien, M.M.; Mortada, W.I.; Kenawy, I.M.; El-Daly, H. Solid phase extraction and preconcentration of trace gallium, indium, and thallium using new modified amino silica. Appl. Spectrosc. 2017, 71, 288–299. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Xiao, Y.; Fan, Y. Recovery of gallium from Bayer liquor: A review. Hydrometallurgy 2012, 125–126, 115–124. [Google Scholar] [CrossRef]
- Frenzel, M.; Ketris, M.P.; Seifert, T.; Gutzmer, J. On the current and future availability of gallium. Resour. Policy 2016, 47, 38–50. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, M.S. A Review on Separation of Gallium and Indium from Leach Liquors by Solvent Extraction and Ion Exchange. Miner. Process. Extr. Metall. Rev. 2019, 40, 278–291. [Google Scholar] [CrossRef]
- Chiew, C.; Morris, M.J.; Malakooti, M.H. Functional liquid metal nanoparticles: Synthesis and applications. Mater. Adv. 2021, 2, 7799–7819. [Google Scholar] [CrossRef]
- Shentu, J.; Pan, J.; Chen, H.; He, C.; Wang, Y.; Dodbiba, G.; Fujita, T. Characteristics for Gallium-Based Liquid Alloys of Low Melting Temperature. Metals 2023, 13, 615. [Google Scholar] [CrossRef]
- Goldsmith, C.R. Aluminum and gallium complexes as homogeneous catalysts for reduction/oxidation reactions. Coord. Chem. Rev. 2018, 377, 209–224. [Google Scholar] [CrossRef]
- Sun, X.; Li, H. Recent progress of Ga-based liquid metals in catalysis. RSC Adv. 2022, 12, 24946–24957. [Google Scholar] [CrossRef] [PubMed]
- Moskalyk, R.R. Gallium: The backbone of the electronics industry. Miner. Eng. 2003, 16, 921–929. [Google Scholar] [CrossRef]
- Lu, F.; Xiao, T.; Lin, J.; Ning, Z.; Long, Q.; Xiao, L.; Huang, F.; Wang, W.; Xiao, Q.; Lan, X.; et al. Resources and extraction of gallium: A review. Hydrometallurgy 2017, 174, 105–115. [Google Scholar] [CrossRef]
- Bereteque, P.D.L. Method of Recovering Gallium from an Aliali Aluminate Lye. US Patent US-2793179-A, 21 May 1957. [Google Scholar]
- Yamada, K.; Harato, T.; Shinya, Y.; Kato, H. Process for Producing Metallic Gallium. EU patent 0076163-A3, 6 April 1983. [Google Scholar]
- Dotzer, R. Method for Producing Gallium, Particularly for Semiconductor Purposes. US Patent US-3170857-A, 23 February 1965. [Google Scholar]
- Varadharaj, A.; Rao, G.P. Extraction of gallium metal by exchange reaction between sodium amalgam and Ga(III): A cyclic voltammetric study. J. Appl. Electrochem. 1986, 16, 929–934. [Google Scholar] [CrossRef]
- Westwood, W.; MacGregor, J.J.; Payne, J.B. Recovery of Gallium. US Patent US-4029499-A, 14 June 1977. [Google Scholar]
- Shalavina, E.L.; Ponomareva, E.I.; Zazubin, A.I.; Ostapenko, T.D.; Ivanova, G.A.; Romanov, G.A.; Bespalov, E.N.; Prokopov, I.V.; Povazhny, B.S.; Smirnov, B.A. Process for Extraction of Gallium from Sodium Aluminate Liquors. US Patent US-3988150-A, 26 October 1976. [Google Scholar]
- Zhao, Z.; Li, X.; Chai, Y.; Hua, Z.; Xiao, Y.; Yang, Y. Adsorption Performances and Mechanisms of Amidoxime Resin toward Gallium(III) and Vanadium(V) from Bayer Liquor, ACS Sustain. Chem. Eng. 2016, 4, 53–59. [Google Scholar]
- Meng, J.J.; He, C.L.; Zhou, J.; Fujita, T.; Ning, S.Y.; Wei, Y.Z. Recovery of gallium by silica-based polymer TBP/SiO2-P obtained from hydrochloric acid solution. J. Appl. Polym. Sci. 2020, 138, e49732. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, J.; Zhou, B.; Yao, S.; Li, H.; Xu, W. Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy 2010, 101, 148–155. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Li, H.; Liu, N.; Liu, X.; Guo, X. Kinetic and thermodynamic studies of adsorption of gallium(III) on nano-TiO2. Rare Met. 2010, 29, 16–20. [Google Scholar] [CrossRef]
- Fortes, M.C.B.; Martins, A.H.; Benedetto, J.S. Indium adsorption onto ion exchange polymeric resins. Miner. Eng. 2003, 16, 659–663. [Google Scholar] [CrossRef]
- Zhao, F.B.; Zou, Y.C.; Lv, X.J.; Liang, H.W.; Jia, Q.; Ning, W.K. Synthesis of CoFe2O4–Zeolite materials and application to the adsorption of gallium and indium. J. Chem. Eng. Data 2015, 60, 1338–1344. [Google Scholar] [CrossRef]
- Piccin, J.S.; Cadaval, T.R.S.; de Pinto, L.A.A.; Dotto, G.L. Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Avila, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 19–51. [Google Scholar]
- Wanga, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Atkins, P.W. Physical Chemistry; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. J. Chem. Eng. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Dotto, G.L.; Salau, N.P.G.; Piccin, J.S.; Cadaval, T.R.S.; de Pinto, L.A.A. Adsorption kinetics in liquid phase: Modeling for discontinuous and continuous systems. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D., Reynel-Avila, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 53–76. [Google Scholar]
- Draa, M.T.; Belaid, T.; Benamor, M. Extraction of Pb(II) by XAD7 impregnated resins with organophosphorus extractants (DEHPA, IONQUEST 801, CYANEX 272). Sep. Purif. Technol. 2004, 40, 77–86. [Google Scholar] [CrossRef]
- Sangeetha, M.K.; Mariappan, M.; Madhurambal, G.; Mojumdar, S.C. TG–DTA, XRD, SEM, EDX, UV, and FT-IR spectroscopic studies of L-valine thiourea mixed crystal. J. Therm. Anal. Calorim. 2015, 119, 907–913. [Google Scholar] [CrossRef]
- Thanh Luong, H.V.; Liu, J.C. Flotation separation of gallium from aqueous solution—Effects of chemical speciation and solubility. Sep. Purif. Technol. 2014, 132, 115–119. [Google Scholar] [CrossRef]
- Zhai, Q.Z. Studies of adsorption of crystal violet from aqueous solution by nano mesocellular foam silica: Process equilibrium, kinetic, isotherm, and thermodynamic studies. Water Sci. Technol. 2020, 81, 2092–2108. [Google Scholar] [CrossRef]
- Mosoarca, G.; Vancea, C.; Popa, S.; Dan, M.; Boran, S. Crystal Violet Adsorption on Eco-Friendly Lignocellulosic Material Obtained from Motherwort (Leonurus cardiaca L.) Biomass. Polymers 2022, 14, 3825. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, W.; Li, H.; Hou, X. The direct adsorption of low concentration gallium from fly ash. Sep. Sci. Technol. 2016, 51, 395–402. [Google Scholar] [CrossRef]
- Ujaczki, E.; Courtney, R.; Cusack, P.; Chinnam, R.K.; Clifford, S.; Curtin, T.; O’Donoghue, L. Recovery of Gallium from Bauxite Residue Using Combined Oxalic Acid Leaching with Adsorption onto Zeolite HY. J. Sustain. Metall. 2019, 5, 262–274. [Google Scholar] [CrossRef]
- Suryavanshi, U.S.; Shukla, S.R. Adsorption of Ga(III) on oxidized coir. Ind. Eng. Chem. Res. 2009, 48, 870–876. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Angosto, J.M.; Roca, M.J.; Miñarro, M.D. Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Sci. Total Environ. 2018, 653, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zolgharnein, J.; Rastgordani, M. Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. J. Mol. Liq. 2018, 262, 405–414. [Google Scholar] [CrossRef]
- Akhtar, T.; Batool, F.; Ahmad, S.; Al-Farraj, E.S.; Irfan, A.; Iqbal, S.; Ullah, S.; Zaki, M.E.A. Defatted Seed Residue of Cucumis melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study. Molecules 2022, 27, 6671. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Parameters | Temperature (K) | |||
---|---|---|---|---|---|
298 | 308 | 318 | 328 | ||
Pseudo-first-order | k1 (1/min) | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.02 |
qe,calc (mg/g) | 2.31 ± 0.42 | 2.34 ± 0.38 | 2.33 ± 0.35 | 2.33 ± 0.27 | |
R2 | 0.9963 | 0.9959 | 0.9960 | 0.9947 | |
χ2 | 0.004 | 0.003 | 0.003 | 0.003 | |
R2adj | 0.9937 | 0.9952 | 0.9951 | 0.9956 | |
Pseudo-second-order | k2 (1/min) | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 |
qe,calc (g/mg·min) | 2.71 ± 0.46 | 2.71 ± 0.35 | 2.63 ± 0.39 | 2.58 ± 0.49 | |
R2 | 0.9826 | 0.9804 | 0.9806 | 0.9794 | |
χ2 | 0.014 | 0.017 | 0.017 | 0.018 | |
R2adj | 0.9791 | 0.9765 | 0.9767 | 0.9753 | |
Elovich | a (g/mg) | 1.83 ± 0.26 | 1.95 ± 0.35 | 2.35 ± 0.37 | 2.76 ± 0.41 |
b (mg/g·min) | 0.40 ± 0.08 | 0.54 ± 0.14 | 1.20 ± 0.24 | 2.75 ± 0.47 | |
R2 | 0.9631 | 0.9595 | 0.9602 | 0.9601 | |
χ2 | 0.031 | 0.035 | 0.035 | 0.035 | |
R2adj | 0.9558 | 0.9514 | 0.9522 | 0.9522 | |
Avrami | kAV (1/min) | 0.26 ± 0.04 | 0.27 ± 0.05 | 0.30 ± 0.07 | 0.32 ± 0.09 |
qAV (mg/g) | 2.27 ± 0.35 | 2.31 ± 0.43 | 2.29 ± 0.29 | 2.28 ± 0.34 | |
nAV | 0.18 ± 0.03 | 0.19 ± 0.04 | 0.21 ± 0.04 | 0.22 ± 0.03 | |
R2 | 0.9958 | 0.9954 | 0.9952 | 0.9938 | |
χ2 | 0.005 | 0.004 | 0.004 | 0.003 | |
R2adj | 0.9921 | 0.9940 | 0.9939 | 0.9945 |
ΔH0 (kJ/mol) | ΔS0 (J/mol·K) | ΔG0 (kJ/mol) | |||
---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | ||
35.8 | 137.2 | −40.8 | −42.2 | −43.5 | −44.9 |
Isotherm Model | Parameters | Value |
---|---|---|
Langmuir | KL (L mg−1) | 0.14 ± 0.02 |
qmax (mg g−1) | 28.86 ± 2.35 | |
R2 | 0.9881 | |
χ2 | 1.31 | |
R2adj | 0.9872 | |
Freundlich | Kf (mg g−1) | 5.36 ± 0.87 |
1/n | 2.38 ± 0.47 | |
R2 | 0.9417 | |
χ2 | 6.43 | |
R2adj | 0.9376 | |
Temkin | KT (L mg−1) | 88.33 ± 5.41 |
b (kJ g−1) | 1101 ± 294 | |
R2 | 0.6671 | |
χ2 | 36.87 | |
R2adj | 0.6426 | |
Sips | Qsat (mg g−1) | 28.79 ± 3.74 |
KS (L mg−1) | 0.14 ± 0.03 | |
n | 1.01 ± 0.12 | |
R2 | 0.9881 | |
χ2 | 1.41 | |
R2adj | 0.9863 |
Adsorbent | Adsorption Capacity (mg/g) | Adsorption Conditions | Reference |
---|---|---|---|
Fly ash | 2.89 | pH = 8.35; t = 24 h; T = 323 K | [36] |
Zeolite HY | 7.90 | pH = 0.5; t = 24 h; T = 293 K | [37] |
Unmodified coir | 13.75 | pH > 2.5; t = 0.5 h; T = 298 K | [38] |
Activated carbon | 16.00 | t = 20 h; T = 298 K | [20] |
Oxidized coir | 19.42 | t = 0.5 h; T = 298 K | [38] |
XAD7-Va | 28.86 | pH > 9; t = 1.5 h; T = 318 K | This paper |
Factor | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
pH | 1 | 4 | 7 | 10 |
Time (min) | 15 | 45 | 90 | 120 |
Initial Ga(III) concentration (mg/L) | 1 | 20 | 60 | 110 |
Temperature (K) | 298 | 308 | 318 | 328 |
pH | Time | Initial Ga(III) Concentration | Temperature | Removal Efficiency | S/N Ratio |
---|---|---|---|---|---|
1 | 15 | 1 | 298 | 71.27 | 37.05 |
1 | 45 | 20 | 308 | 85.01 | 38.59 |
1 | 90 | 60 | 318 | 86.95 | 38.78 |
1 | 120 | 110 | 328 | 54.52 | 34.73 |
4 | 15 | 20 | 318 | 75.08 | 37.51 |
4 | 45 | 1 | 328 | 85.71 | 38.66 |
4 | 90 | 110 | 298 | 71.52 | 37.08 |
4 | 120 | 60 | 308 | 88.18 | 38.90 |
7 | 15 | 60 | 328 | 79.42 | 37.99 |
7 | 45 | 110 | 318 | 72.68 | 37.22 |
7 | 90 | 1 | 308 | 86.26 | 38.71 |
7 | 120 | 20 | 298 | 89.38 | 39.02 |
10 | 15 | 110 | 308 | 59.95 | 35.55 |
10 | 45 | 60 | 298 | 87.66 | 38.85 |
10 | 90 | 20 | 328 | 89.72 | 39.05 |
10 | 120 | 1 | 318 | 87.94 | 38.88 |
1 | 15 | 1 | 298 | 71.27 | 37.05 |
1 | 45 | 20 | 308 | 85.01 | 38.59 |
1 | 90 | 60 | 318 | 86.95 | 38.78 |
1 | 120 | 110 | 328 | 54.52 | 34.73 |
4 | 15 | 20 | 318 | 75.08 | 37.51 |
4 | 45 | 1 | 328 | 85.71 | 38.66 |
Level | pH | Time | Initial Ga(III) Concentration | Temperature |
---|---|---|---|---|
1 | 37.29 | 37.03 | 38.33 | 38.01 |
2 | 38.04 | 38.33 | 38.55 | 37.94 |
3 | 38.24 | 38.41 | 38.64 | 38.10 |
4 | 38.09 | 37.89 | 36.15 | 37.61 |
Delta | 0.95 | 1.38 | 2.49 | 0.49 |
Rank | 3 | 2 | 1 | 4 |
Contribution (%) | 9.60 | 19.89 | 66.88 | 3.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vancea, C.; Ciocarlie, L.; Negrea, A.; Mosoarca, G.; Ciopec, M.; Duteanu, N.; Negrea, P.; Pascu, B.; Nemes, N.-S. Evaluation of Functionalized Amberlite Type XAD7 Polymeric Resin with L-Valine Amino Acid Performance for Gallium Recovery. Polymers 2024, 16, 837. https://doi.org/10.3390/polym16060837
Vancea C, Ciocarlie L, Negrea A, Mosoarca G, Ciopec M, Duteanu N, Negrea P, Pascu B, Nemes N-S. Evaluation of Functionalized Amberlite Type XAD7 Polymeric Resin with L-Valine Amino Acid Performance for Gallium Recovery. Polymers. 2024; 16(6):837. https://doi.org/10.3390/polym16060837
Chicago/Turabian StyleVancea, Cosmin, Loredana Ciocarlie, Adina Negrea, Giannin Mosoarca, Mihaela Ciopec, Narcis Duteanu, Petru Negrea, Bogdan Pascu, and Nicoleta-Sorina Nemes. 2024. "Evaluation of Functionalized Amberlite Type XAD7 Polymeric Resin with L-Valine Amino Acid Performance for Gallium Recovery" Polymers 16, no. 6: 837. https://doi.org/10.3390/polym16060837
APA StyleVancea, C., Ciocarlie, L., Negrea, A., Mosoarca, G., Ciopec, M., Duteanu, N., Negrea, P., Pascu, B., & Nemes, N. -S. (2024). Evaluation of Functionalized Amberlite Type XAD7 Polymeric Resin with L-Valine Amino Acid Performance for Gallium Recovery. Polymers, 16(6), 837. https://doi.org/10.3390/polym16060837