Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications
Abstract
:1. Introduction
2. Advanced Electrospinning of Polymer-Based Nanofibers
2.1. Structural Design
2.2. Preparation of the Derivatives
3. Applications in Energy and Environmental Applications
3.1. Human Motion Monitoring and Energy Harvesting
3.2. Environmental Monitoring
3.2.1. Gas Sensors
3.2.2. Humidity Detector
3.2.3. Other Pollution Detectors
3.3. Pollution Purification
3.3.1. Air Filter
3.3.2. Water Purification
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ehsanullah, S.; Tran, Q.H.; Sadiq, M.; Bashir, S.; Mohsin, M.; Iram, R. How Energy Insecurity Leads to Energy Poverty? Do Environmental Consideration and Climate Change Concerns Matters. Environ. Sci. Pollut. Res. 2021, 28, 55041–55052. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, P. Poly(Arylene Ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers 2023, 15, 4527. [Google Scholar]
- Jazie, A.A.; Albaaji, A.J.; Abed, S.A. A Review on Recent Trends of Antiviral Nanoparticles and Airborne Filters: Special Insight on COVID-19 Virus. Air Qual. Atmos. Health 2021, 14, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zheng, Z.; Tian, Y.; Zhang, H.; Wang, M.; Yu, Z.; Zhang, X. Preparation and Characterization of Electrospun PAN-CuCl2 Composite Nanofiber Membranes with a Special Net Structure for High-Performance Air Filters. Polymers 2022, 14, 4387. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha Kemerich, P.D.; Martins, S.R.; Kobiyama, M.; Flores, C.E.B.; De Borba, W.F.; Fernandes, G.D.; Santi, A.L.; Cherubin, M.R. Ensuring Optimal Feeding of Infants and Young Children during Emergencies: A Summary of the Policy of the World Health Organization. Anu. Inst. Geocienc. 2014, 37, 75–88. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Wang, Q.; Li, T.; Yao, B.; Zou, Y.; Xu, M. Advances in Triboelectric Pressure Sensors. Sens. Actuators A Phys. 2023, 355, 114331. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Xu, W.; Xiong, R.; Huang, C. Cellulose-Based Fibrous Materials for Self-Powered Wearable Pressure Sensor: A Mini Review. Cellulose 2023, 30, 1981–1998. [Google Scholar] [CrossRef]
- Wang, Y.; Yokota, T.; Someya, T. Electrospun Nanofiber-Based Soft Electronics. NPG Asia Mater. 2021, 13, 22. [Google Scholar] [CrossRef]
- Wang, X.X.; Yu, G.F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Conductive Polymer Ultrafine Fibers via Electrospinning: Preparation, Physical Properties and Applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Wang, D.C.; Lei, S.N.; Zhong, S.; Xiao, X.; Guo, Q.H. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers 2023, 15, 4159. [Google Scholar] [CrossRef]
- Phung, T.H.; Gafurov, A.N.; Kim, I.; Kim, S.Y.; Kim, K.M.; Lee, T.M. Hybrid Device Fabrication Using Roll-to-Roll Printing for Personal Environmental Monitoring. Polymers 2023, 15, 2687. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, X.; Guo, J.; Wang, L.; Dong, Z.; Li, X.; Yang, L.; Zhang, D.; Qian, L.; He, C. High Performance and Highly Selective Sensing of Triethylamine Sensors Based on Cu-Doped MoO3 Nanobelts. J. Alloys Compd. 2024, 976, 173152. [Google Scholar] [CrossRef]
- Vegas, V.G.; García-Hernán, A.; Aguilar-Galindo, F.; Perles, J.; Amo-Ochoa, P. Structural and Theoretical Study of Copper(II)-5-Fluoro Uracil Acetate Coordination Compounds: Single-Crystal to Single-Crystal Transformation as Possible Humidity Sensor. Polymers 2023, 15, 2827. [Google Scholar] [CrossRef] [PubMed]
- Li, P.H.; Madhaiyan, G.; Shin, Y.Y.; Tsai, H.Y.; Meng, H.F.; Horng, S.F.; Zan, H.W. Facile Fabrication of a Bio-Inspired Leaf Vein-Based Ultra-Sensitive Humidity Sensor with a Hygroscopic Polymer. Polymers 2022, 14, 5030. [Google Scholar] [CrossRef]
- Du, Y.; Yu, D.G.; Yi, T. Electrospun Nanofibers as Chemosensors for Detecting Environmental Pollutants: A Review. Chemosensors 2023, 11, 208. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zhang, M.; Ge, M.; Wang, J.; Tang, Y.; Zhang, Y.; Mi, J.; Cai, W.; Lai, Y.; et al. Rational Design of Electrospun Nanofibers for Gas Purification: Principles, Opportunities, and Challenges. Chem. Eng. J. 2022, 446, 137099. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, M.; Ma, W.; Huang, C. Multifunctional Electrospun Nanofibrous Membrane: An Effective Method for Water Purification. Sep. Purif. Technol. 2023, 327, 124952. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, W.; Kaiser, A.; Ni, Q.-Q.; Xia, H.; Jin, X.; Liu, F. Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Adv. Sci. 2020, 7, 497–525. [Google Scholar] [CrossRef]
- Song, J.; Lin, X.; Ee, L.Y.; Li, S.F.Y.; Huang, M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing; Springer Nature: Singapore, 2023; Volume 5, ISBN 0123456789. [Google Scholar]
- Demir, D.; Bolgen, N.; Vaseashta, A. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers 2023, 15, 4253. [Google Scholar] [CrossRef]
- Lee, J.K.Y.; Chen, N.; Peng, S.; Li, L.; Tian, L.; Thakor, N.; Ramakrishna, S. Polymer-Based Composites by Electrospinning: Preparation & Functionalization with Nanocarbons. Prog. Polym. Sci. 2018, 86, 40–84. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A Review on Electrospun Polymeric Nanofibers: Production Parameters and Potential Applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, S.; Yao, Y.; Wang, J.; Zhu, X.; Jiang, R.; Zhang, J.; Zhang, W.; Wang, C. MOFs Meet Electrospinning: New Opportunities for Water Treatment. Chem. Eng. J. 2023, 453, 139669. [Google Scholar] [CrossRef]
- Si, Y.; Shi, S.; Hu, J. Applications of Electrospinning in Human Health: From Detection, Protection, Regulation to Reconstruction. Nano Today 2023, 48, 101723. [Google Scholar] [CrossRef]
- Tabakoglu, S.; Kołbuk, D.; Sajkiewicz, P. Multifluid Electrospinning for Multi-Drug Delivery Systems: Pros and Cons, Challenges, and Future Directions. Biomater. Sci. 2022, 11, 37–61. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Guo, H.; Liu, L.; Xu, W.; Duan, G. Structural Design toward Functional Materials by Electrospinning: A Review. e-Polymers 2020, 20, 682–712. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zeng, L.; Qiao, Z.; Liu, X.; Liu, H.; Zhang, J.; Ding, J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019, 24, 834. [Google Scholar] [CrossRef]
- Nayak, P.; Ghosh, A.K.; Bhatnagar, N. Enhancement of Electrospun UHMWPE Fiber Performance through Post-Processing Treatment. J. Appl. Polym. Sci. 2023, 140, e54221. [Google Scholar] [CrossRef]
- Lv, C.; Liu, Q.; Li, D.; Wang, T.; Shao, H.; Yang, Y.; Dong, X. Electrospinning of Photoluminescent-Magnetic GdF3:Tb3+,Sm3+@SiO2 Belt-in-Belt Structured Nanoribbons with Tunable Fluorescence and Energy Transfer. Ceram. Int. 2024, 50, 1655–1664. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, G.; Li, H.; Li, Z.; Chen, J.; Wang, L.; Wu, Y. Slit Needleless Electrospun Heteroatoms-Doped Hollow Porous Carbon Nanofibers for Solid-State Flexible Supercapacitors. J. Alloys Compd. 2023, 943, 169188. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, J.; Shahid, M.; Xing, Y.; Hu, Y.; Li, T.; Zhang, M.; Nishijima, H.; Pan, W. High Photosensitivity and External Quantum Efficiency Photosensors Achieved by a Cable like Nanoarchitecture. Nanotechnology 2020, 31, 015601. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lv, H.; Cao, X.; Liu, Y.; Yu, D.G. Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers 2023, 15, 921. [Google Scholar] [CrossRef]
- Li, Y.; Smith, S.A.; Zhou, N.; Tan, Z. Enhancing Mechanical Strength of Electrospun Nanofibers by Coaxial Electrospinning and Thermal Treatment. Can. J. Chem. Eng. 2024, 102, 242–253. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, X.; Song, Z.; Liu, J.; Liu, X.; Zhang, C. Simulation Guided Coaxial Electrospinning of Polyvinylidene Fluoride Hollow Fibers with Tailored Piezoelectric Performance. Small 2023, 19, 2303285. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Gulino, E.F.; Citarrella, M.C. Biodegradable Membrane with High Porosity and Hollow Structure Obtained via Electrospinning for Oil Spill Clean-up Application. J. Polym. Environ. 2023, 31, 3965–3981. [Google Scholar] [CrossRef]
- Peter, S.; Lyczko, N.; Gopakumar, D.; Maria, H.J.; Nzihou, A.; Thomas, S. Nanocellulose and Its Derivative Materials for Energy and Environmental Applications. J. Mater. Sci. 2022, 57, 6835–6880. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Fernández, R.; Alaee, P.; Wu, S.; Wuttke, S.; Ko, F.; Arjmand, M. Metal-Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Adv. Funct. Mater. 2022, 32, 2207723. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Liu, Y.; Gao, Y.; Kim, H.Y.; Ouyang, Y.; Yu, D.G. Progresses on Electrospun Metal–Organic Frameworks Nanofibers and Their Wastewater Treatment Applications. Mater. Today Chem. 2022, 25, 100974. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Yao, Y.; Zhang, H.; Na, J.; Zhou, Y.; Zhu, Z.; Qi, J.; Eguchi, M.; Yamauchi, Y.; et al. Modular Assembly of MOF-Derived Carbon Nanofibers into Macroarchitectures for Water Treatment. Chem. Sci. 2022, 13, 9159–9164. [Google Scholar] [CrossRef] [PubMed]
- Pusty, M.; Shirage, P.M. Insights and Perspectives on Graphene-PVDF Based Nanocomposite Materials for Harvesting Mechanical Energy. J. Alloys Compd. 2022, 904, 164060. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Liu, Q.; Deng, W.; Yue, Y.; Meng, F. Ultrathin Flexible Electrospun Carbon Nanofibers Reinforced Graphene Microgasbags Films with Three-Dimensional Conductive Network toward Synergetic Enhanced Electromagnetic Interference Shielding. J. Mater. Sci. Technol. 2022, 111, 57–65. [Google Scholar] [CrossRef]
- Othman, F.E.C.; Yusof, N.; González-Benito, J.; Fan, X.; Ismail, A.F. Electrospun Composites Made of Reduced Graphene Oxide and Polyacrylonitrile-Based Activated Carbon Nanofibers (RGO/ACNF) for Enhanced CO2 Adsorption. Polymers 2020, 12, 2117. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Y.; Guo, L.; Wei, G. Carbon Nanofiber-Based Three-Dimensional Nanomaterials for Energy and Environmental Applications. Mater. Adv. 2020, 1, 2163–2181. [Google Scholar] [CrossRef]
- Sriwichai, S.; Phanichphant, S. Fabrication and Characterization of Electrospun Poly(3-Aminobenzylamine)/Functionalized Multi-Walled Carbon Nanotubes Composite Film for Electrochemical Glucose Biosensor. Express Polym. Lett. 2022, 16, 439–450. [Google Scholar] [CrossRef]
- Chen, T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators. Adv. Funct. Mater. 2018, 28, 1800514. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Z.; Wang, Y. Progress in Microtopography Optimization of Polymers-Based Pressure/Strain Sensors. Polymers 2023, 15, 764. [Google Scholar] [CrossRef]
- Jensen, B.N.; Wang, Y.; Le Friec, A.; Nabavi, S.; Dong, M.; Seliktar, D.; Chen, M. Wireless Electromagnetic Neural Stimulation Patch with Anisotropic Guidance. npj Flex. Electron. 2023, 7, 34. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Wen, X.; Tang, A.; Wan, C.; Sui, T.; Zhang, D.; Ju, X. A Washable, Permeable, and Ultrasensitive Sn-Based Textile Pressure Sensor for Health Monitoring. IEEE Trans. Electron Devices 2023, 70, 739–745. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Zhang, Y.; Chen, M. High-Voltage Wave Induced a Unique Structured Percolation Network with a Negative Gauge Factor. ACS Appl. Mater. Interfaces 2022, 14, 5661–5672. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Sun, S.; Wan, C.; Li, M.; Tang, A.; Ju, X. Ceramic Hybrid Nanofiber-Based Elastic Scaffold Pressure Sensor with Good Sensitivity, Breathability, and Washability. Ceram. Int. 2024, 50, 3453–3460. [Google Scholar] [CrossRef]
- Maruccio, C.; Quaranta, G.; De Lorenzis, L.; Monti, G. Energy Harvesting from Electrospun Piezoelectric Nanofibers for Structural Health Monitoring of a Cable-Stayed Bridge. Smart Mater. Struct. 2016, 25, 085040. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S.D.; Tudu, B.; Mandal, D. Electrospun Gelatin Nanofiber Based Self-Powered Bio-e-Skin for Health Care Monitoring. Nano Energy 2017, 36, 166–175. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Su, Z.; Chen, H.; Cheng, X.; Zhang, J.; Han, M.; Zhang, H. Flexible Fiber-Based Hybrid Nanogenerator for Biomechanical Energy Harvesting and Physiological Monitoring. Nano Energy 2017, 38, 43–50. [Google Scholar] [CrossRef]
- Huang, L.; Lin, S.; Xu, Z.; Zhou, H.; Duan, J.; Hu, B.; Zhou, J. Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting. Adv. Mater. 2020, 32, 1902034. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.Y.; Jing, X.; Zheng, Q.; Fang, L.; Huang, H.X.; Turng, L.S.; Gong, S. High-Performance Flexible Triboelectric Nanogenerator Based on Porous Aerogels and Electrospun Nanofibers for Energy Harvesting and Sensitive Self-Powered Sensing. Nano Energy 2018, 48, 327–336. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J.; Zhao, S.; Fan, W.; Zhang, X.; Zhang, C.; Xing, Y.; Li, C. Stretchable and Tailorable Triboelectric Nanogenerator Constructed by Nanofibrous Membrane for Energy Harvesting and Self-Powered Biomechanical Monitoring. Adv. Mater. Technol. 2018, 3, 1700370. [Google Scholar] [CrossRef]
- Fuh, Y.K.; Chen, P.C.; Ho, H.C.; Huang, Z.M.; Li, S.C. All-Direction Energy Harvester Based on Nano/Micro Fibers as Flexible and Stretchable Sensors for Human Motion Detection. RSC Adv. 2015, 5, 67787–67794. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Lin, D.; Zhang, R.; Li, H.; Zhang, W.; Liu, W.; Huang, S.; Yao, L.; Cheng, J.; et al. One-Dimensional Electrospun Ceramic Nanomaterials and Their Sensing Applications. J. Am. Ceram. Soc. 2022, 105, 765–785. [Google Scholar] [CrossRef]
- Sencadas, V. Energy Harvesting Applications from Poly(ε-Caprolactone) Electrospun Membranes. ACS Appl. Polym. Mater. 2020, 2, 2105–2110. [Google Scholar] [CrossRef]
- Guo, W.; Tan, C.; Shi, K.; Li, J.; Wang, X.X.; Sun, B.; Huang, X.; Long, Y.Z.; Jiang, P. Wireless Piezoelectric Devices Based on Electrospun PVDF/BaTiO3 NW Nanocomposite Fibers for Human Motion Monitoring. Nanoscale 2018, 10, 17751–17760. [Google Scholar] [CrossRef]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric Pvdf Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef]
- Mirjalali, S.; Mahdavi Varposhti, A.; Abrishami, S.; Bagherzadeh, R.; Asadnia, M.; Huang, S.; Peng, S.; Wang, C.H.; Wu, S. A Review on Wearable Electrospun Polymeric Piezoelectric Sensors and Energy Harvesters. Macromol. Mater. Eng. 2023, 308, 2200442. [Google Scholar] [CrossRef]
- Ni, Q.Q.; Guan, X.; Zhu, Y.; Dong, Y.; Xia, H. Nanofiber-Based Wearable Energy Harvesters in Different Body Motions. Compos. Sci. Technol. 2020, 200, 108478. [Google Scholar] [CrossRef]
- Shaikh, M.O.; Huang, Y.-B.; Wang, C.-C.; Chuang, C.-H. Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting. Micromachines 2019, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Gradys, A.; Kim, S.K.; Persano, L.; Marzec, M.; Kryshtal, A.; Busolo, T.; Toncelli, A.; Pisignano, D.; Bernasik, A.; et al. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 13575–13583. [Google Scholar] [CrossRef]
- Mishra, H.K.; Gupta, V.; Roy, K.; Babu, A.; Kumar, A.; Mandal, D. Revisiting of Δ−PVDF Nanoparticles via Phase Separation with Giant Piezoelectric Response for the Realization of Self-Powered Biomedical Sensors. Nano Energy 2022, 95, 107052. [Google Scholar] [CrossRef]
- Zhu, M.; Chng, S.S.; Cai, W.; Liu, C.; Du, Z. Piezoelectric Polymer Nanofibers for Pressure Sensors and Their Applications in Human Activity Monitoring. RSC Adv. 2020, 10, 21887–21894. [Google Scholar] [CrossRef]
- Forouzan, A.; Yousefzadeh, M.; Latifi, M.; Jose, R. Effect of Geometrical Parameters on Piezoresponse of Nanofibrous Wearable Piezoelectric Nanofabrics Under Low Impact Pressure. Macromol. Mater. Eng. 2021, 306, 2000510. [Google Scholar] [CrossRef]
- Sun, F.; Huang, S.Y.; Ren, H.T.; Li, T.T.; Zhang, Y.; Lou, C.W.; Lin, J.H. Core-Sheath Structured TiO2@PVDF/PAN Electrospun Membranes for Photocatalysis and Oil-Water Separation. Polym. Compos. 2020, 41, 1013–1023. [Google Scholar] [CrossRef]
- Yang, T.; Wan, C.; Zhang, X.; Liu, T.; Niu, L.; Fang, J.; Liu, Y. High-Efficiency Preparation of Multifunctional Conjugated Electrospun Graphene Doped PVDF/CF Yarns for Energy Harvesting and Human Movement Monitoring in TENG Textile. Nano Res. 2023. [Google Scholar] [CrossRef]
- Hassanin, A.H.; Elnabawy, E.; Salah, M.; Nair, R.; Gamal, M.; Omran, N.; Popelka, A.; Kandas, I.; Shehata, N. Multi-Functional Wet-Electrospun Piezoelectric Nanofibers Sensing Mat: Manufacturing, Characterization, and Applications. Mater. Sci. Semicond. Process. 2023, 166, 107708. [Google Scholar] [CrossRef]
- Zhi, C.; Shi, S.; Zhang, S.; Si, Y.; Yang, J.; Meng, S.; Fei, B.; Hu, J. Bioinspired All-Fibrous Directional Moisture-Wicking Electronic Skins for Biomechanical Energy Harvesting and All-Range Health Sensing. Nano-Micro Lett. 2023, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhang, C.; Liu, Y.; Wang, S.; Dong, K.; Li, Y.; Wu, F.; Liang, J.; Wang, C.; Zhang, Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Research. 2023, 16, 11612–11620. [Google Scholar] [CrossRef]
- Meena, J.S.; Khanh, T.D.; Jung, S.B.; Kim, J.W. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns. ACS Appl. Mater. Interfaces 2023, 15, 29486–29498. [Google Scholar] [CrossRef] [PubMed]
- Varghese, H.; Athira, B.S.; Chandran, A. Highly Flexible Triboelectric Nanogenerator Based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement. IEEE Sens. J. 2023, 23, 13925–13932. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary Health Impacts of Transported Global Air Pollution and International Trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, S.; Wang, M.; Liu, S.; Liu, G.; Meng, X.; Xu, Z.; Wang, M.; Qiao, G. Electrospun Cu-Doped In2O3 Hollow Nanofibers with Enhanced H2S Gas Sensing Performance. J. Adv. Ceram. 2022, 11, 427–442. [Google Scholar] [CrossRef]
- Park, K.R.; Cho, H.B.; Lee, J.; Song, Y.; Kim, W.B.; Choa, Y.H. Design of Highly Porous SnO2-CuO Nanotubes for Enhancing H2S Gas Sensor Performance. Sens. Actuators B Chem. 2020, 302, 127179. [Google Scholar] [CrossRef]
- Sun, N.; Tian, Q.; Bian, W.; Wang, X.; Dou, H.; Li, C.; Zhang, Y.; Gong, C.; You, X.; Du, X.; et al. Highly Sensitive and Lower Detection-Limit NO2 Gas Sensor Based on Rh-Doped ZnO Nanofibers Prepared by Electrospinning. Appl. Surf. Sci. 2023, 614, 156213. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Liu, Y.; Li, X.; Shao, C.; Ri, J.; Ma, J.; Liu, Y. Construction of In2O3/ZnO Yolk-Shell Nanofibers for Room-Temperature NO2 Detection under UV Illumination. J. Hazard. Mater. 2021, 403, 124093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, B.; Li, W.; Dong, Y.; Ni, Y.; Yu, P.; Liang, J.; Kim, N.Y.; Wang, J. Electrospun Copper-Doped Tungsten Oxide Nanowires for Triethylamine Gas Sensing. Vacuum 2023, 215, 112377. [Google Scholar] [CrossRef]
- Yang, J.; Han, W.; Jiang, B.; Wang, X.; Sun, Y.; Wang, W.; Lou, R.; Ci, H.; Zhang, H.; Lu, G. Electrospinning Derived NiO/NiFe2O4Fiber-in-Tube Composite for Fast Triethylamine Detection under Different Humidity. ACS Sens. 2022, 7, 995–1007. [Google Scholar] [CrossRef]
- Chen, X.; Liang, R.; Qin, C.; Ye, Z.; Zhu, L. Coaxial Electrospinning Fe2O3@Co3O4 Double-Shelled Nanotubes for Enhanced Ethanol Sensing Performance in a Wide Humidity Range. J. Alloys Compd. 2022, 891, 161868. [Google Scholar] [CrossRef]
- Wang, A.C.; Wang, S.K.; Zhou, B.J.; Cheng, J.D.; Liu, Q.Y.; Pan, J.L.; Qiao, Y.; Wang, Y.C.; Sun, G.Z.; Zhang, Z.X.; et al. Side-by-Side Design of Bi-Component Heterojunction Nanofibers for High-Performance Gas Sensors: Improvement in Synergistic Effect. Appl. Surf. Sci. 2022, 603, 154436. [Google Scholar] [CrossRef]
- Hu, K.; Wang, F.; Shen, Z.; Liu, H.; Xiong, J. Ternary Heterojunctions Synthesis and Sensing Mechanism of Pd/ZnO–SnO2 Hollow Nanofibers with Enhanced H2 Gas Sensing Properties. J. Alloys Compd. 2021, 850, 156663. [Google Scholar] [CrossRef]
- Chen, C.; Chen, W.; Liu, Q.; Liu, Y.; Xiao, G.; Chen, C.; Li, F.; Zhou, J. Electrospinning of Pd-In2O3Nanofibers for High-Performance Room Temperature Hydrogen Sensors. ACS Appl. Nano Mater. 2022, 5, 12646–12655. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Gao, Y.; Chen, F.; Wang, T.; Xia, H.; Sui, X.; Wang, Z. Fast-Response Hydrogen Sulfide Gas Sensor Based on Electrospinning Co3O4 Nanofibers-Modified CuO Nanoflowers: Experimental and DFT Calculation. Sensors Actuators B Chem. 2023, 396, 134579. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Electrospinning of Flexible Poly(Vinyl Alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. Nano-Micro Lett. 2021, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Sardana, S.; Singh, Z.; Sharma, A.K.; Kaur, N.; Pati, P.K.; Mahajan, A. Self-Powered Biocompatible Humidity Sensor Based on an Electrospun Anisotropic Triboelectric Nanogenerator for Non-Invasive Diagnostic Applications. Sens. Actuators B Chem. 2022, 371, 132507. [Google Scholar] [CrossRef]
- Ngoensawat, U.; Pisuchpen, T.; Sritana-anant, Y.; Rodthongkum, N.; Hoven, V.P. Conductive Electrospun Composite Fibers Based on Solid-State Polymerized Poly(3,4-Ethylenedioxythiophene) for Simultaneous Electrochemical Detection of Metal Ions. Talanta 2022, 241, 123253. [Google Scholar] [CrossRef] [PubMed]
- Fotia, A.; Frontera, P.; Bonaccorsi, L.; Sciacca, B.; Malara, A. Encapsulation of Disodium-EDTA in Electrospun Polymeric Fibers for the Detection of Heavy Metals. Adv. Sustain. Syst. 2023, 2300463. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Zhang, H.; Wu, W.; Wu, Y.; Liu, M.; Ao, Y.; Li, M. Multistage Pore Structure Legume-like UiO-66-NH2@carbon Nanofiber Aerogel Modified Electrode as an Electrochemical Sensor for High Sensitivity Detection of HMIs. J. Environ. Chem. Eng. 2023, 11, 111488. [Google Scholar] [CrossRef]
- Rotake, D.; Pratim Goswami, P.; Govind Singh, S. Ultraselective, Ultrasensitive, Point-of-Care Electrochemical Sensor for Detection of Hg(II) Ions with Electrospun-InZnO Nanofibers. J. Electroanal. Chem. 2022, 915, 116350. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, M.; Lu, T.; Fan, Q.; Ma, W.; Zhang, X.; Chen, L.; Min, H.; Xiong, R.; Huang, C. Hierarchical Fiber with Granular-Convex Structure for Highly Efficient PM2.5 Capture. Sep. Purif. Technol. 2023, 304, 122235. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Zhang, X.; Zeng, Z.; Tao, R.; Qu, Q.; Zhang, Y.; Zhu, M.; Xiong, R.; Huang, C. Multi-Hierarchical Nanofiber Membrane with Typical Curved-Ribbon Structure Fabricated by Green Electrospinning for Efficient, Breathable and Sustainable Air Filtration. J. Memb. Sci. 2022, 660, 120857. [Google Scholar] [CrossRef]
- He, R.; Li, J.; Chen, M.; Zhang, S.; Cheng, Y.; Ning, X.; Wang, N. Tailoring Moisture Electroactive Ag/Zn@cotton Coupled with Electrospun PVDF/PS Nanofibers for Antimicrobial Face Masks. J. Hazard. Mater. 2022, 428, 128239. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Shao, P.; Yang, L.; Zhao, C.; Feng, J.; Wang, L. Deep Separation Between In(III) and Fe(III) Ions by Regulating the Lewis Basicity of Adsorption Sites on Electrospun Fibers. Adv. Funct. Mater. 2023, 2313443. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Sun, Z.; Yang, C.; Tang, D. Effective Strategy to Fabricate ZIF-8@ZIF-8/Polyacrylonitrile Nanofibers with High Loading Efficiency and Improved Removing of Cr(VI). Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125292. [Google Scholar] [CrossRef]
- Wu, J.; Li, Q.; Su, G.; Luo, R.; Du, D.; Xie, L.; Tang, Z.; Yan, J.; Zhou, J.; Wang, S.; et al. Green, Ultrafine Cellulose-Based Porous Nanofibrous Membranes for Efficient Heavy Metal Removal through Incorporation of Chitosan by Various Electrospinning Ways. Cellulose 2022, 29, 5745–5763. [Google Scholar] [CrossRef]
- Xu, C.; Shi, S.; Wang, X.; Zhou, H.; Wang, L.; Zhu, L.; Zhang, G.; Xu, D. Electrospun SiO2-MgO Hybrid Fibers for Heavy Metal Removal: Characterization and Adsorption Study of Pb(II) and Cu(II). J. Hazard. Mater. 2020, 381, 120974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shen, Q.; Huang, F.; Jiang, L.; Liu, J.; Sheng, J.; Li, Y.; Yang, H. Electrospinning Directly Synthesis of 0D/1D CuBi2O4@WO3 Nanofiber Photocatalyst with S-Scheme Heterojunction. Appl. Surf. Sci. 2023, 608, 155064. [Google Scholar] [CrossRef]
- Teng, P.; Zhu, J.; Li, Z.; Li, K.; Copner, N.; Gao, S.; Zhao, E.; Zhu, X.; Liu, Z.; Tian, F.; et al. Flexible PAN-Bi2O2CO3–BiOI Heterojunction Nanofiber and the Photocatalytic Degradation Property. Opt. Mater. 2022, 134, 112935. [Google Scholar] [CrossRef]
- Chen, G.; Hing Wong, N.; Sunarso, J.; Wang, Y.; Liu, Z.; Chen, D.; Wang, D.; Dai, G. Flexible Bi2MoO6/S-C3N4/PAN Heterojunction Nanofibers Made from Electrospinning and Solvothermal Route for Boosting Visible-Light Photocatalytic Performance. Appl. Surf. Sci. 2023, 612, 155893. [Google Scholar] [CrossRef]
- Wang, B.; Cao, Q.; Cheng, M.; Li, G.; Zhang, J.; Jiang, H. Photocatalytic Degradation of Antibiotics in Water by Pollution-Free Photocatalytic Films with a Three-Dimensional Layered Structure and the Reaction Mechanism Study. J. Water Process Eng. 2023, 52, 103550. [Google Scholar] [CrossRef]
- Song, R.; Yao, L.; Sun, C.; Yu, D.; Lin, H.; Li, G.; Lian, Z.; Zhuang, S.; Zhang, D. Electrospun Membranes Anchored with G-C3N4/MoS2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B1 under Visible Light. Toxins 2023, 15, 133. [Google Scholar] [CrossRef]
- Mahadadalkar, M.A.; Park, N.H.; Yusuf, M.; Nagappan, S.; Nallal, M.; Park, K.H. Electrospun Fe Doped TiO2 Fiber Photocatalyst for Efficient Wastewater Treatment. Chemosphere 2023, 330, 138599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Tian, T.; Wang, Y. Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications. Polymers 2024, 16, 839. https://doi.org/10.3390/polym16060839
Lu G, Tian T, Wang Y. Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications. Polymers. 2024; 16(6):839. https://doi.org/10.3390/polym16060839
Chicago/Turabian StyleLu, Gang, Tao Tian, and Yuting Wang. 2024. "Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications" Polymers 16, no. 6: 839. https://doi.org/10.3390/polym16060839
APA StyleLu, G., Tian, T., & Wang, Y. (2024). Advanced Electrospinning Technology Applied to Polymer-Based Sensors in Energy and Environmental Applications. Polymers, 16(6), 839. https://doi.org/10.3390/polym16060839