Glycerol Acrylate-Based Photopolymers with Antimicrobial and Shape-Memory Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Specimens
2.3. Characterization Techniques
2.4. Real-Time Photorheometry
2.5. Antimicrobial Testing
3. Results and Discussion
3.1. Monitoring of Photocuring Kinetics by Real-Time Photorheometry
3.2. Characterization of Polymer Structure
3.3. Thermal Properties
3.4. Shape-Memory Properties of Polymers
3.5. Mechanical Characteristics
3.6. Antimicrobial Activity of Polymers
4. Conclusions
- Enhanced polymer properties with vanillin styrene: The addition of vanillin styrene in the photopolymer formulation led to improved rigidity and thermal stability. However, this enhancement came at the cost of reduced antibacterial activity. This suggests that when designing polymers, mechanical properties and antibacterial activity must be balanced.
- High antimicrobial activity: All synthesized polymers demonstrated high antibacterial activity against Escherichia coli (71.78–99.12%) and Staphylococcus aureus (54.68–88.38%), as well as antifungal activity against Aspergillus flavus (94.04–96.85%) and Aspergillus niger (89.97–92.50%). Even after just one hour of contact, the polymers exhibited significant antimicrobial activity, suggesting their potential benefit in various antimicrobial applications.
- Thermoresponsive shape-memory properties: Polymers based on 2-hydroxy-3-phenoxypropyl acrylate showed thermoresponsive shape-memory behavior. They were able to keep their temporary shape below the glass transition temperature while also returning to their permanent shape above it.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Euring, M.; Ostendorf, K.; Zhang, K. Biobased materials for food packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Heo, J.B.; Lee, Y.S.; Chung, C.H. Marine plant-based biorefinery for sustainable 2,5-furandicarboxylic acid production: A review. Bioresour. Technol. 2023, 390, 129817. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R.; Nilsson, L.J.; Zhang, B.; Rehnberg, N.; Lundmark, S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Lin, F.Y.; Forrester, M.; Henrichsen, W.; Murphy, G.; Shen, L.; Wang, T.P.; Cochran, E.W. Glycerol Ketals as Building Blocks for a New Class of Biobased (Meth)acrylate Polymers. ACS Sustain. Chem. Eng. 2021, 9, 10620–10629. [Google Scholar] [CrossRef]
- Ben, Z.Y.; Samsudin, H.; Yhaya, M.F. Glycerol: Its properties, polymer synthesis, and applications in starch based films. Eur. Polym. J. 2022, 175, 111377. [Google Scholar] [CrossRef]
- Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488–502. [Google Scholar] [CrossRef]
- Xu, L.; Liaqat, F.; Sun, J.; Khazi, M.I.; Xie, R.; Zhu, D. Advances in the vanillin synthesis and biotransformation: A review. Renew. Sustain. Energy Rev. 2024, 189, 113905. [Google Scholar] [CrossRef]
- Polunin, Y.; Domnich, B.; Tiwari, S.; Thorat, S.; Sibi, M.; Voronov, A. Free radical (Co)Polymerization of aromatic vinyl monomers derived from vanillin. Eur. Polym. J. 2023, 201, 112546. [Google Scholar] [CrossRef]
- Lai, H.; Peng, X.; Li, L.; Zhu, D.; Xiao, P. Novel monomers for photopolymer networks. Prog. Polym. Sci. 2022, 128, 101529. [Google Scholar] [CrossRef]
- Cao, J.; Liu, X.; Cameron, A.; Aarts, J.; Choi, J.J.E. Influence of different post-processing methods on the dimensional accuracy of 3D-printed photopolymers for dental crown applications—A systematic review. J. Mech. Behav. Biomed. Mater. 2024, 150, 106314. [Google Scholar] [CrossRef]
- Sternberg, J.; Sequerth, O.; Pilla, S. Green chemistry design in polymers derived from lignin: Review and perspective. Prog. Polym. Sci. 2021, 113, 101344. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, L.; Li, Z.; Wang, S.; Shi, J.; Tang, W.; Li, N.; Yang, J. The recent development of vat photopolymerization: A review. Addit. Manuf. 2021, 48, 102423. [Google Scholar] [CrossRef]
- Andreu, A.; Su, P.C.; Kim, J.H.; Siang, C.; Kim, S.; Kim, I.; Lee, I.; Noh, J.; Subramanian, A.S.; Yoon, Y.J. 4D printing materials for vat photopolymerization. Addit. Manuf. 2021, 44, 102024. [Google Scholar] [CrossRef]
- Andjela, L.; Abdurahmanovich, V.M.; Vladimirovna, S.N.; Mikhailovna, G.I.; Yurievich, D.D.; Alekseevna, M.A. A review on Vat Photopolymerization 3D-printing processes for dental application. Dent. Mater. 2022, 38, 284–296. [Google Scholar] [CrossRef]
- Rashid, A.A.; Ahmed, W.; Khalid, M.Y.; Koç, M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, W.; Amirfazli, A.; Yu, S. Recent advances in shape memory superhydrophobic surfaces: Concepts, mechanism, classification, applications and challenges. Polymer 2022, 256, 125193. [Google Scholar] [CrossRef]
- Alshebly, Y.S.; Nafea, M.; Ali, M.S.M.; Almurib, H.A.F. Review on recent advances in 4D printing of shape memory polymers. Eur. Polym. J. 2021, 159, 110708. [Google Scholar] [CrossRef]
- Wieszczycka, K.; Staszak, K.; Woźniak-Budych, M.J.; Litowczenko, J.; Maciejewska, B.M.; Jurga, S. Surface functionalization—The way for advanced applications of smart materials. Coord. Chem. Rev. 2021, 436, 213846. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Liu, Y.; Leng, J. Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Mater. Sci. Eng. R Rep. 2022, 151, 100702. [Google Scholar] [CrossRef]
- Uyan, M.; Celiktas, M.S. Evaluation of the bio-based materials utilization in shape memory polymer composites production. Eur. Polym. J. 2023, 195, 112196. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.; Xu, Y.; Ali, A.; Hussain, Z.; Duan, Q.; Liu, H.; Yu, L. Antimicrobial packaging materials of PLA/starch composites functionalized by pomegranate peel. J. Taiwan Inst. Chem. Eng. 2024, 156, 105371. [Google Scholar] [CrossRef]
- Brakemi, E.; Michael, K.; Tan, S.P.; Helen, H. Antimicrobial activity of natural mollusc shells: A review. Process Biochem. 2024, 137, 122–133. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, J.; Dong, Q.; Luan, D.; Tao, N.; Deng, S.; Wang, L.; Hao, Y.; Li, L. Development of organic-inorganic hybrid antimicrobial materials by mechanical force and application for active packaging. Food Packag. 2023, 37, 101060. [Google Scholar] [CrossRef]
- Shi, F.; Ma, S.S.; Liu, S.; Xin, R.; Chen, B.; Ye, W.; Sun, J. A novel antimicrobial strategy for bacterial infections: Gallium-based materials. Colloid Interface Sci. Commun. 2023, 56, 100735. [Google Scholar] [CrossRef]
- Ding, Y.Y.; Zhou, H.; Deng, P.; Zhang, B.Q.; Zhang, Z.J.; Wang, G.H.; Zhang, S.Y.; Wu, Z.R.; Wang, Y.R.; Liu, Y.Q. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur. J. Med. Chem. 2023, 259, 115627. [Google Scholar] [CrossRef]
- Liu, M.; Bauman, L.; Nogueira, C.L.; Aucoin, M.G.; Anderson, W.A.; Zhao, B. Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. Curr. Opin. Biomed. Eng. 2022, 22, 100395. [Google Scholar] [CrossRef]
- Mohammad, Z.H.; Ahmad, F. Nanocoating and its application as antimicrobials in the food industry: A review. Int. J. Biol. Macromol. 2024, 254, 127906. [Google Scholar] [CrossRef] [PubMed]
- Green, W.A. Industrial Photoiniciators, A Technical Guide, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Navaruckiene, A.; Bridziuviene, D.; Raudoniene, V.; Rainosalo, E.; Ostrauskaite, J. Vanillin acrylate-based thermo-responsive shape memory antimicrobial photopolymers. Express Polym. Lett. 2022, 16, 279–295. [Google Scholar] [CrossRef]
- Jönsson, E.S.; Lee, T.Y.; Viswanathan, K.; Hoyle, C.E.; Roper, T.M.; Guymon, C.A.; Nason, C.; Khudyakov, I.V. Photoinduced free radical polymerization using self-initiating monomers. Prog. Org. Coat. 2005, 52, 63–72. [Google Scholar] [CrossRef]
- Imakaev, M.V.; Tchourine, K.M.; Nechaev, S.K.; Mirny, L.A. Effects of topological constraints on globular polymers. Soft. Matter. 2015, 11, 665. [Google Scholar] [CrossRef]
- Czech, Z.; Kabatc, J.; Bartkowiak, M.; Mozelewska, K.; Kwiatkowska, D. Influence of an Alkoxylation Grade of Acrylates on Shrinkage of UV-Curable Compositions. Polymers 2020, 12, 2617. [Google Scholar] [CrossRef] [PubMed]
- Münchow, E.A.; Meereis, C.T.W.; Luiz de Oliveira da Rosa, W.; Fernandes da Silva, A.; Piva, E. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of technique protocol and photo-activation strategies. J. Mech. Behav. Biomed. Mater. 2018, 82, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Topa-Skwarczyńska, M.; Ortyl, J. Photopolymerization shrinkage: Strategies for reduction, measurement methods and future insights. Polym. Chem. 2023, 14, 2145–2158. [Google Scholar] [CrossRef]
- Sereikaite, V.; Navaruckiene, A.; Jaras, J.; Skliutas, E.; Ladika, D.; Gray, D.; Malinauskas, M.; Talacka, V.; Ostrauskaite, J. Functionalized Soybean Oil- and Vanillin-Based Dual Cure Photopolymerizable System for Light-Based 3D Structuring. Polymers 2022, 14, 5361. [Google Scholar] [CrossRef]
- Bassett, A.W.; Honnig, A.E.; Breyta, C.M.; Dunn, I.C.; La Scala, J.J.; Stanzione, J.F. Vanillin-Based Resin for Additive Manufacturing. ACS. Sustain. Chem. Eng. 2020, 8, 5626. [Google Scholar] [CrossRef]
- Yang, K.; Du, J.; Zhang, Z.; Ren, T. A facile strategy to fabricate robust triple-shape memory polymer. Mater. Lett. 2019, 257, 126753. [Google Scholar] [CrossRef]
- Jaras, J.; Navaruckiene, A.; Ostrauskaite, J. Thermoresponsive Shape-Memory Biobased Photopolymers of Tetrahydrofurfuryl Acrylate and Tridecyl Methacrylate. Materials 2023, 16, 2156. [Google Scholar] [CrossRef]
- Motiekaityte, G.; Navaruckiene, A.; Raudoniene, V.; Bridziuviene, D.; Jaras, J.; Kantminiene, K.; Ostrauskaite, J. Antimicrobial dual-cured photopolymers of vanillin diglycidyl ether and glycerol dimethacrylate. J. Appl. Polym. Sci. 2022, 140, e53289. [Google Scholar] [CrossRef]
- Poolman, J.T.; Anderson, A.S. Escherichia coli and Staphylococcus aureus: Leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert. Rev. Vaccines 2018, 17, 607–618. [Google Scholar] [CrossRef]
- Xu, S.; Chang, X.; Xu, H.; Xie, Y.; Ge, S.; Xu, Y.; Luo, Z.; Shan, Y.; Ding, S. Decoding a novel green and effective antimicrobial agent: Glycerol monolaurate stable in nanosystem. Food Control 2024, 160, 110371. [Google Scholar] [CrossRef]
- Shakhatreh, M.A.; Al-Smadi, M.L.; Khabour, O.F.; Shuaibu, F.A.; Hussein, E.I.; Alzoubi, K.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des. Dev. Ther. 2016, 10, 3653–3660. [Google Scholar] [CrossRef] [PubMed]
Resin | Glycerol Derivative | Molar Ratio of Glycerol Derivative and Vanillin Styrene | Amount of Photoinitiator TPO, mol.% * |
---|---|---|---|
B1 | HPPA | 1:0.1 | 3 |
B2 | GDMA | 1:0.1 | 3 |
B3 | GTMA | 1:0.1 | 3 |
B4 | HPPA | 1:0 | 3 |
B5 | GDMA | 1:0 | 3 |
B6 | GTMA | 1:0 | 3 |
Resin | Storage Modulus G′ *, MPa | Loss Modulus G″ *, MPa | Complex Viscosity *, mPa·s | Gel Point, tgel, s | Shrinkage, % |
---|---|---|---|---|---|
B1 | 281 ± 4 | 97.8 ± 2.0 | 4.73 ± 0.09 | 1.8 ± 0.0 | 2 ± 0.0 |
B2 | 489 ± 7 | 98.8 ± 1.6 | 7.94 ± 0.12 | 2.3 ± 0.1 | 14 ± 0.5 |
B3 | 224 ± 8 | 52.5 ± 0.8 | 3.66 ± 0.06 | 2.4 ± 0.0 | 13 ± 0.4 |
B4 | 238 ± 6 | 199.0 ± 2.1 | 4.93 ± 0.04 | 1.3 ± 0.1 | 5 ± 0.2 |
B5 | 293 ± 5 | 33.3 ± 0.4 | 4.69 ± 0.05 | 0.3 ± 0.0 | 11 ± 0.4 |
B6 | 251 ± 4 | 121.0 ± 1.5 | 4.44 ± 0.04 | 2.6 ± 0.1 | 8 ± 0.0 |
Polymer | Yield of Insoluble Fraction, % | Swelling Values in Acetone, % | Swelling Values in Toluene, % |
---|---|---|---|
B1 | 93 ± 0.2 | 197.2 ± 3.2 | 1.48 ± 0.1 |
B2 | 94 ± 0.1 | 1.4 ± 0.1 | 4.66 ± 0.2 |
B3 | 98 ± 0.5 | 1.9 ± 0.1 | 3.88 ± 0.1 |
B4 | 86 ± 0.3 | 169.3 ± 2.0 | 9.14 ± 0.2 |
B5 | 94 ± 0.1 | 2.2 ± 0.1 | 14.31 ± 0.3 |
B6 | 89 ± 0.2 | 7.3 ± 0.2 | 0.48 ± 0.0 |
Polymer | Tdec-10%, °C * | Tg, °C ** |
---|---|---|
B1 | 312 | 27 |
B2 | 329 | 55 |
B3 | 372 | 39 |
B4 | 314 | 19 |
B5 | 341 | 47 |
B6 | 321 | 35 |
Polymer | Young’s Modulus, MPa | Tensile Strength, MPa | Elongation at Break, % |
---|---|---|---|
B1 | 46.6 ± 0.9 | 1.9 ± 0.1 | 139.0 ± 5.2 |
B2 | 167.2 ± 1.2 | 2.1 ± 0.1 | 1.9 ± 0.0 |
B3 | 73.5 ± 1.0 | 0.5 ± 0.0 | 3.3 ± 0.1 |
B4 | 6.4 ± 0.0 | 0.5 ± 0.0 | 291.4 ± 7.6 |
B5 | 219.9 ± 3.5 | 1.9 ± 0.1 | 1.7 ± 0.0 |
B6 | 96.9 ± 1.1 | 0.3 ± 0.0 | 2.9 ± 0.1 |
Polymer | Reduction in Microbial Spores (CFU/mL) after 1 h, % | |||
---|---|---|---|---|
Escherichia coli | Staphylococcus aureus | Aspergillus flavus | Aspergillus niger | |
B1 | 71.78 ± 0.20 | 64.68 ± 0.35 | 94.04 ± 0.10 | 89.97 ± 0.15 |
B2 | 73.51 ± 0.35 | 72.95 ± 0.40 | 95.13 ± 0.20 | 90.84 ± 0.10 |
B3 | 78.18 ± 0.20 | 74.81 ± 0.20 | 95.77 ± 0.25 | 91.27 ± 0.10 |
B4 | 82.30 ± 0.45 | 75.14 ± 0.25 | 95.80 ± 0.10 | 91.72 ± 0.05 |
B5 | 87.82 ± 0.50 | 78.09 ± 0.30 | 96.63 ± 0.10 | 91.93 ± 0.05 |
B6 | 99.12 ± 0.20 | 88.38 ± 0.10 | 96.85 ± 0.10 | 92.50 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saunoryte, E.; Navaruckiene, A.; Grauzeliene, S.; Bridziuviene, D.; Raudoniene, V.; Ostrauskaite, J. Glycerol Acrylate-Based Photopolymers with Antimicrobial and Shape-Memory Properties. Polymers 2024, 16, 862. https://doi.org/10.3390/polym16060862
Saunoryte E, Navaruckiene A, Grauzeliene S, Bridziuviene D, Raudoniene V, Ostrauskaite J. Glycerol Acrylate-Based Photopolymers with Antimicrobial and Shape-Memory Properties. Polymers. 2024; 16(6):862. https://doi.org/10.3390/polym16060862
Chicago/Turabian StyleSaunoryte, Evelina, Aukse Navaruckiene, Sigita Grauzeliene, Danguole Bridziuviene, Vita Raudoniene, and Jolita Ostrauskaite. 2024. "Glycerol Acrylate-Based Photopolymers with Antimicrobial and Shape-Memory Properties" Polymers 16, no. 6: 862. https://doi.org/10.3390/polym16060862
APA StyleSaunoryte, E., Navaruckiene, A., Grauzeliene, S., Bridziuviene, D., Raudoniene, V., & Ostrauskaite, J. (2024). Glycerol Acrylate-Based Photopolymers with Antimicrobial and Shape-Memory Properties. Polymers, 16(6), 862. https://doi.org/10.3390/polym16060862