Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation the Complexation of Diamine Monomer with β-Cyclodextrin
2.3. Synthesis of Soluble β-Cyclodextrin-Polyimide Composite Films
2.4. Preparation of β-Cyclodextrin PI Composite Films
2.5. Characterization of β-Cyclodextrin PI Composite Flims
3. Results
3.1. The Complexation of Diamine Monomer with β-Cyclodextrin
3.2. Synthesis and Characterization of β-Cyclodextrin Polyimide Composite Films
3.3. Mechanical Properties of β-Cyclodextrin PI Composite Films
3.4. Thermal Properties of β-Cyclodextrin PI Composite Films
3.5. Optical Properties and Dissolution Performance
3.6. Dielectric Properties of β-Cyclodextrin PI Composite Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sezer Hicyilmaz, A.; Celik Bedeloglu, A. Applications of Polyimide Coatings: A Review. SN Appl. Sci. 2021, 3, 363. [Google Scholar] [CrossRef]
- Choudhary, A.; Pal, S.; Sarkhel, G. Broadband Millimeter-Wave Absorbers: A Review. Int. J. Microw. Wirel. Technol. 2022, 15, 347–363. [Google Scholar] [CrossRef]
- Maier, G. Low Dielectric Constant Polymers for Microelectronics. Prog. Polym. Sci. 2001, 26, 3–65. [Google Scholar] [CrossRef]
- Bohr, M.T. Interconnect Scaling-the Real Limiter to High Performance ULSI. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 10 December 1995; pp. 241–244. [Google Scholar]
- Huang, C.; Li, J.; Xie, G.; Han, F.; Huang, D.; Zhang, F.; Zhang, B.; Zhang, G.; Sun, R.; Wong, C.-P. Low-Dielectric Constant and Low-Temperature Curable Polyimide/POSS Nanocomposites. Macromol. Mater. Eng. 2019, 304, 1900505. [Google Scholar] [CrossRef]
- Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q. Facile Method for Fabricating Low Dielectric Constant Polyimide Fibers with Hyperbranched Polysiloxane. J. Mater. Chem. C 2017, 5, 2818–2825. [Google Scholar] [CrossRef]
- Farrell, R.A.; Petkov, N.; Cherkaoui, K.; Amenitsch, H.; Holmes, J.D.; Hurley, P.K.; Morris, M.A. Facile and Controlled Synthesis of Ultra-Thin Low Dielectric Constant Meso/Microporous Silica Films. Chemphyschem 2008, 9, 1524–1527. [Google Scholar] [CrossRef]
- Li, Z.; Johnson, M.C.; Sun, M.; Ryan, E.T.; Earl, D.J.; Maichen, W.; Martin, J.I.; Li, S.; Lew, C.M.; Wang, J.; et al. Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials. Angew. Chem. Int. Ed. 2006, 45, 6329–6332. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Lee, W.-J.; Kim, S.-J.; Cho, N.-S.; Kim, D.-M.; Kim, G.H. Low Fluorine Colorless Polyimide Substrate for Flexible OLED Display. ECS Meet. Abstr. 2021, 239, 1043. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Y.; Liu, Y.; Yang, C.; Dai, S.; Wang, X.; Liu, J. Preparation and Properties of Intrinsically Black Polyimide Films with CIE Lab Color Parameters Close to Zero and High Thermal Stability for Potential Applications in Flexible Printed Circuit Boards. Polymers 2022, 14, 3881. [Google Scholar] [CrossRef]
- Wang, L.; Sterken, T.; Cauwe, M.; Cuypers, D.; Vanfleteren, J. Fabrication and Characterization of Flexible Ultrathin Chip Package Using Photosensitive Polyimide. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1099–1106. [Google Scholar] [CrossRef]
- Qian, C.; Bei, R.; Zhu, T.; Zheng, W.; Liu, S.; Chi, Z.; Aldred, M.P.; Chen, X.; Zhang, Y.; Xu, J. Facile Strategy for Intrinsic Low-k Dielectric Polymers: Molecular Design Based on Secondary Relaxation Behavior. Macromolecules 2019, 52, 4601–4609. [Google Scholar] [CrossRef]
- Lv, P.; Dong, Z.; Dai, X.; Zhao, Y.; Qiu, X. Low-Dielectric Polyimide Nanofoams Derived from 4,4′-(Hexafluoroisopropylidene)Diphthalic Anhydride and 2,2′-Bis(Trifluoromethyl)Benzidine. RSC Adv. 2017, 7, 4848–4854. [Google Scholar] [CrossRef]
- Dong, X.; Wan, B.; Zheng, M.-S.; Xu, H.; Gao, J.; Chen, G.; Zha, J.-W. Emerging Ionic Liquid-Induced Porous Polyimide Films toward Ultralow Permittivity, Improved Hydrophobic and Electromagnetic Wave Absorption. Polymer 2022, 260, 125382. [Google Scholar] [CrossRef]
- Zhang, Z.; He, P.; Ma, W.; Zuo, P.; Liu, X.; Zhuang, Q. An Ultralow-k Dielectric Derived from a Fluorinated Polybenzoxazole Composite Film with Yolk–Multishell Mesoporous Silica Nanostructures. J. Mater. Chem. C 2023, 11, 6162–6172. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Wang, P.; Ma, X. High-Performance and Low-Dielectric Cyanate Ester Resin Optimized by Regulating the Structure of Linear Polyhydroxy Ether Modifier. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107136. [Google Scholar] [CrossRef]
- Hao, J.; Wei, Y.; Li, X.; Mu, J. Poly(Arylene Ether Ketone)s with Low Dielectric Constants Derived from Polyhedral Oligomeric Silsesquioxane and Difluorinated Aromatic Ketones. J. Appl. Polym. Sci. 2018, 135, 46084. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.Q.; Yuan, Y.C.; Shi, C.Q.; Liu, S.M.; Yan, S.J.; Zhao, Y.; Zhang, M.Q. Polyimide/Crown Ether Composite Films with Necklace-Like Supramolecular Structure and Improved Mechanical, Dielectric, and Hydrophobic Properties. Macromolecules 2015, 48, 2173–2183. [Google Scholar] [CrossRef]
- Krishnan, R.; Rakhi, A.M.; Gopidas, K.R. Study of β-Cyclodextrin–Pyromellitic Diimide Complexation. Conformational Analysis of Binary and Ternary Complex Structures by Induced Circular Dichroism and 2D NMR Spectroscopies. J. Phys. Chem. C 2012, 116, 25004–25014. [Google Scholar] [CrossRef]
- Treichel, H.; Ruhl, G.; Ansmann, P.; Würl, R.; Müller, C.; Dietlmeier, M. Low Dielectric Constant Materials for Interlayer Dielectric: (Invited Paper). Microelectron. Eng. 1998, 40, 1–19. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, S.; Fan, L. Preparation and Characterization of Highly Transparent and Colorless Semi-Aromatic Polyimide Films Derived from Alicyclic Dianhydride and Aromatic Diamines. Polymer 2012, 53, 3529–3539. [Google Scholar] [CrossRef]
- Hasegawa, M.; Hirano, D.; Fujii, M.; Haga, M.; Takezawa, E.; Yamaguchi, S.; Ishikawa, A.; Kagayama, T. Solution-Processable Colorless Polyimides Derived from Hydrogenated Pyromellitic Dianhydride with Controlled Steric Structure. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 575–592. [Google Scholar] [CrossRef]
- Yan, X.; Dai, F.; Ke, Z.; Yan, K.; Chen, C.; Qian, G.; Li, H. Synthesis of Colorless Polyimides with High Tg from Asymmetric Twisted Benzimidazole Diamines. Eur. Polym. J. 2022, 164, 110975. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A. Colorless Polyimides Derived from 1S,2S,4R,5R-Cyclohexanetetracarboxylic Dianhydride, Self-Orientation Behavior during Solution Casting, and Their Optoelectronic Applications. Polymer 2014, 55, 4693–4708. [Google Scholar] [CrossRef]
- Hu, X.; Mu, H.; Wang, Y.; Wang, Z.; Yan, J. Colorless Polyimides Derived from Isomeric Dicyclohexyl-Tetracarboxylic Dianhydrides for Optoelectronic Applications. Polymer 2018, 134, 8–19. [Google Scholar] [CrossRef]
- Bai, W.; Hu, Z.; Lu, Y.; Xiao, G.; Zhao, H.; Zhu, J.; Liu, Z. Solubility, Thermal and Photoluminescence Properties of Triphenyl Imidazole-Containing Polyimides. RSC Adv. 2021, 11, 23802–23814. [Google Scholar] [CrossRef]
- Bei, R.; Qian, C.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J.; Aldred, M.P. Intrinsic Low Dielectric Constant Polyimides: Relationship between Molecular Structure and Dielectric Properties. J. Mater. Chem. C 2017, 5, 12807–12815. [Google Scholar] [CrossRef]
- Hinkley, J.A.; Mings, S.L. Fracture Toughness of Polyimide Films. Polymer 1990, 31, 75–77. [Google Scholar] [CrossRef]
- Suzuki, H.; Abe, T.; Takaishi, K.; Narita, M.; Hamada, F. The Synthesis and X-Ray Structure of 1,2,3,4-Cyclobutane Tetracarboxylic Dianhydride and the Preparation of a New Type of Polyimide Showing Excellent Transparency and Heat Resistance. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 108–116. [Google Scholar] [CrossRef]
- Kim, S.D.; Kim, S.Y.; Chung, I.S. Soluble and Transparent Polyimides from Unsymmetrical Diamine Containing Two Trifluoromethyl Groups. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 4413–4422. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Y.; Ding, Y.; Yang, T.; Duan, G.; Hou, H. β-Cyclodextrin Toughened Polyimide Composites toward All-Organic Dielectric Materials. J. Mater. Sci. Mater. Electron. 2018, 29, 1182–1188. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Hao, F.; Zhou, H.; Qi, S.; Tian, G.; Wu, D. Ultra-Low Dielectric Constant Polyimides: Combined Efforts of Fluorination and Micro-Branched Crosslink Structure. Eur. Polym. J. 2021, 143, 110206. [Google Scholar] [CrossRef]
- Clausius, R. Ueber die Vergleichung der Electrodynamischen Grundgesetze mit der Erfahrung. Ann. Phys. 1880, 246, 608–618. [Google Scholar] [CrossRef]
System Name | n(diamine) (mmol) | n(ODA) (mmol) | n(HFBAPP) (mmol) | n(β-CD) (mmol) | n(H″PMDA) (mmol) | n(HFBAPP) | n(βCD)/n(ODA) |
---|---|---|---|---|---|---|---|
PI-0 | 2.504 | 2.504 | 0 | —— | 2.504 | 0 | —— |
PI-3 | 2.504 | 0.7512 | 1.7528 | —— | 2.504 | 0 | 0.5 |
PI-5 | 2.504 | 1.252 | 1.252 | —— | 2.504 | 0 | 1 |
PI-7 | 2.504 | 1.7528 | 0.7512 | —— | 2.504 | 0 | 2 |
PI-10 | 2.504 | 0 | 2.504 | —— | 2.504 | 0 | 2 |
PI-CD0 | 5.008 | 2.504 | 2.504 | —— | 5.008 | —— | —— |
PI-CD1 | 5.008 | 2.504 | 2.504 | 1.252 | 5.008 | 0.5 | 0.5 |
PI-CD2 | 5.008 | 2.504 | 2.504 | 2.504 | 5.008 | 1 | 1 |
PI-CD3 | 5.008 | 2.504 | 2.504 | 5.008 | 5.008 | 2 | 2 |
Dianhydride | Diamine | T400 (%) | λCut (nm) | ε | E (GPa) | T5d (N2) | Tg (°C) | Ref. |
---|---|---|---|---|---|---|---|---|
4.4′-ODA | 84 | 293 | —— | 2.4 | 442 | 333 | [21] | |
TFMB | 85 | 292 | —— | 2.7 | 474 | 370 | [21] | |
3.4′-ODA | 87.8 | 306 | 2.86 | 1.69 | —— | 253 | [22] | |
4.4′-ODA | 92 | 306 | 2.82 | 2.31 | —— | 306 | [22] | |
TFMB | 89.5 | 291 | 2.65 | 2.23 | 477 | 291 | [22] | |
HFBAPP | 7 | 296 | 2.75 | 1.59 | 475 | 277 | [22] | |
4.4′-ODA /HFBAPP | 85 | 286 | 2.65 | 2.47 | 523 | 327 | This work | |
BMD | 76 | 335 | —— | 2.8 | 465 | 421 | [23] | |
BMD | 80 | 330 | —— | 2.8 | 465 | 409 | [23] | |
4,4′-ODA | 76 | 294 | 2.88 | 2.42 | 453 | 294 | [24] | |
HFBAPP | 87.7 | 286 | 2.72 | 1.56 | 502 | 287 | [24] | |
TFMB | 90.3 | 292 | 2.64 | —— | 455 | 344 | [24] | |
4,4′-ODA | 80 | 298 | 2.81 | 2.1 | 468 | 256 | [25] | |
4,4′-ODA | 78 | 310 | 2.77 | 2.5 | 446 | 321 | [25] | |
4,4′-ODA | 83 | 299 | 2.81 | 2 | 438 | 297 | [25] |
Sample | [η]/dL·g−1 | Mn | Mw | PDI |
---|---|---|---|---|
PI-CD0 | 2.76 | 2.9 × 105 | 4.0 × 105 | 1.39 |
PI-CD1 | 1.59 | 1.5 × 105 | 2.1 × 105 | 1.42 |
PI-CD2 | 1.55 | 1.4 × 105 | 1.9 × 105 | 1.42 |
PI-CD3 | 1.38 | 1.1 × 105 | 1.9 × 105 | 1.77 |
Sample | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation at Break (%) | Thickness (μm) |
---|---|---|---|---|
PI-CD0 | 145 | 2.47 | 6.3 | 120 |
PI-CD1 | 124 | 2.23 | 6.5 | 130 |
PI-CD2 | 122 | 2.20 | 6.8 | 115 |
PI-CD3 | 98 | 1.87 | 7.4 | 140 |
Sample | Td5%/°C | Td10%/°C | R800c/% | Tg/°C | Wt%(β-CD) |
---|---|---|---|---|---|
PI-0 | 472 | 484 | 39.93 | 317 | 0 |
PI-3 | 492 | 507 | 41.48 | 320 | 0 |
PI-5 | 523 | 532 | 42.89 | 327 | 0 |
PI-7 | 528 | 539 | 43.63 | 334 | 0 |
PI-10 | 532 | 546 | 43.77 | 345 | 0 |
PI-CD0 | 524 | 533 | 42.89 | 327 | 0 |
PI-CD1 | 401 | 523 | 39.19 | 331 | 7.63 |
PI-CD2 | 370 | 407 | 38.18 | 328 | 11.49 |
PI-CD3 | 407 | 533 | 39.92 | 329 | 6.33 |
Sample | DMAc | DMF | DMSO | NMP | CH2Cl2 | CHCl3 | THF |
---|---|---|---|---|---|---|---|
PI-0 | +− | +− | +− | +− | −− | −− | −− |
PI-3 | ++ | ++ | ++ | ++ | −− | −− | −− |
PI-5 | ++ | ++ | ++ | ++ | −− | −− | −− |
PI-7 | ++ | ++ | ++ | ++ | +− | +− | +− |
PI-10 | ++ | ++ | ++ | ++ | +− | +− | +− |
PI-CD0 | ++ | ++ | ++ | ++ | +− | +− | −− |
PI-CD1 | ++ | ++ | ++ | ++ | ++ | ++ | +− |
PI-CD2 | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
PI-CD3 | ++ | ++ | ++ | ++ | ++ | ++ | +− |
Sample | β-CD a (mol%) | K (10 MHz) | tanθ (10 MHz) | F b (wt%) |
---|---|---|---|---|
PI-CD0 | 0 | 2.6211 | 0.00395 | 3.198 |
PI-CD1 | 20 | 2.5264 | 0.00482 | 4.785 |
PI-CD2 | 30 | 2.486 | 0.00186 | 5.989 |
PI-CD3 | 50 | 2.5192 | 0.00291 | 7.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Dou, Y.; Liu, L.; Song, M.; Xi, Z.; Xu, Y.; Shen, W.; Wang, J. Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance. Polymers 2024, 16, 901. https://doi.org/10.3390/polym16070901
Zhang X, Dou Y, Liu L, Song M, Xi Z, Xu Y, Shen W, Wang J. Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance. Polymers. 2024; 16(7):901. https://doi.org/10.3390/polym16070901
Chicago/Turabian StyleZhang, Xuexin, Yao Dou, Liqun Liu, Meixuan Song, Zhenhao Xi, Yisheng Xu, Weihua Shen, and Jie Wang. 2024. "Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance" Polymers 16, no. 7: 901. https://doi.org/10.3390/polym16070901
APA StyleZhang, X., Dou, Y., Liu, L., Song, M., Xi, Z., Xu, Y., Shen, W., & Wang, J. (2024). Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance. Polymers, 16(7), 901. https://doi.org/10.3390/polym16070901