Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature
Abstract
:1. Introduction
2. Geometry of Yarn Architectures
3. Finite Element Formulation
3.1. CTE of 3D Braided Composites
3.2. CTC of 3D Braided Composites
4. Numerical Calculation and Discussions
4.1. Coefficients of Thermal Expansion
4.2. Coefficients of Thermal Conductivity
5. Conclusions
- (1)
- The environmental temperature has significant impact on the thermal expansion properties of 3D four-direction carbon/epoxy braided composites. As the temperature rises, the components are prone to longitudinal shrinkage and lateral expansion. The higher the temperature, the more pronounced the deformation effects. With increasing temperature from room temperature to 200 °C, the longitudinal CTEs are all negative or zero and decrease, while the transverse CTEs increase, but at a lower rate until the temperature increases above 150 °C.
- (2)
- The longitudinal and transverse CTCs all increase linearly with the increase in temperature. As the temperature rises, the heat exchange of 3D braided composites with the surroundings decreases, and its temperature change trend slows down.
- (3)
- The braiding angle has notable influence on the thermophysical properties of 3D four-direction carbon/epoxy braided composites. With increasing temperature, the size stability of the braided composites with small braiding angles is superior to that of the braided composites with large braiding angles, while the thermal insulation performance of the braided composites with large braiding angles is better than that of the braided composites with small braiding angles.
- (4)
- Meanwhile, the anisotropy of the thermophysical properties of 3D four-direction carbon/epoxy braided composites is clearly observed. And as the braiding angle decreases, the anisotropic characteristics become more distinct; at the same braiding angle, the higher the temperature, the more pronounced the anisotropic characteristics.
- (5)
- The outcomes achieved with the current approach align with the experimental findings, which confirms the precision and viability of the method in forecasting the thermophysical characteristics of 3D four-direction carbon/epoxy braided composites. The approach, capable of integration into commercial finite element software, proves to be an effective tool for designing and optimizing the structure of heterogeneous materials exhibiting anisotropic properties or complex geometries.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.L. Three-cell model and 5D braided structural composites. Compos. Sci. Technol. 1996, 56, 225–233. [Google Scholar] [CrossRef]
- Sun, H.Y.; Qiao, X. Prediction of the mechanical properties of three- dimensionally braided composites. Compos. Sci. Technol. 1997, 57, 623–629. [Google Scholar] [CrossRef]
- Yu, X.G.; Cui, J.Z. The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 2007, 67, 471–480. [Google Scholar] [CrossRef]
- Tang, Z.X.; Postle, R. Mechanics of three-dimensional braided structures for composite materials—Part II: Prediction of the elastic moduli. Compos. Struct. 2001, 51, 451–457. [Google Scholar] [CrossRef]
- Dong, J.W.; Feng, M.L. Asymptotic expansion homogenization for simulating progressive damage of 3D braided composites. Compos. Struct. 2010, 92, 873–882. [Google Scholar] [CrossRef]
- Xiao, Z.T.; Pei, L.; Zhang, F.; Geng, L.; Wu, J.; Tong, J.; Xi, J.; Ogunbona, P.O. Measurement of surface parameters of three-dimensional braided composite preform based on curvature scale space corner detector. Text. Res. J. 2017, 88, 2641–2653. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gu, B.H.; Sun, B.Z.; Pan, Z. Punch shear performance and damage mechanisms of three-dimensional braided composite with different thicknesses. Text. Res. J. 2018, 89, 2126–2141. [Google Scholar] [CrossRef]
- Long, J.; Xu, F.; Wu, Y. Strain rate effect on compressive damages of thermo-oxidative aged 3D braided composites. Eng. Fract. Mech. 2022, 276, 108886. [Google Scholar] [CrossRef]
- Han, J.; Wang, R.; Hu, D.; Bao, J.; Liu, X.; Guo, X. A novel integrated model for 3D braided composites considering stochastic characteristics. Compos. Struct. 2022, 286, 115309. [Google Scholar] [CrossRef]
- Cui, J.; Yan, S.; Zhao, Y.; Jiang, L. Low-velocity impact and residual compression performance of carbon fiber reinforced composite stiffened plates. Appl. Compos. Mater. 2023, 30, 1185–1206. [Google Scholar] [CrossRef]
- Jia, M.R.; Wan, Z.K.; Pei, X.Y.; Guo, J.; Bao, W.; Gong, L.; Liu, Y.; Zhao, J. Network Optimization of CNT Yarn Sensor Based on NNIA Algorithm in Damage Monitoring of 3D Braided Composites. Materials 2022, 15, 8534. [Google Scholar] [CrossRef]
- Mohajerjasbi, S. Predictions for coefficients of thermal expansion of three-dimensional braided composites. AIAA J. 1997, 35, 141–144. [Google Scholar] [CrossRef]
- Yao, X.F.; Yang, G.; Yao, Z.H.; Dai, F.; Yi, J. Experimental study of thermal expansion behavior on braided structure composite. Acta Mater. Compos. Sin. 2000, 17, 20–25. [Google Scholar]
- Wang, A.S.D.; Mohajerjasbi, S. Thermoelastic properties of 3-D braided composites: Experiment and predictions. Am. Soc. Mech. Eng. Noise Control Acoust. Div. NCA 1995, 20, 275–293. [Google Scholar]
- Liang, J.; Du, S.Y.; Chen, X.F. Thermal expansion coefficients of 3-D braided composites with penny-shaped microcracks. Acta Mater. Compos. Sin. 1998, 15, 103–107. [Google Scholar]
- Xia, B.; Lu, Z.X. Finite element analysis on thermo-physical properties of 3D braided composites. Acta Aeronaut. ET Astronaut. Sin. 2011, 32, 1040–1049. [Google Scholar]
- Gowayed, Y.; Hwang, J.C. Thermal conductivity of composite materials made from plain weaves and 3-D weaves. Compos. Eng. 1994, 5, 1177–1186. [Google Scholar] [CrossRef]
- Schuster, J.; Heider, D.; Sharp, K.; Glowania, M. Measuring and modeling the three- dimensionally woven fabric composites. Mech. Compos. Mater. 2009, 45, 165–174. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhang, H.G.; Lu, Z.X.; Li, D. Investigation on the Thermal Conductivity of 3-Dimensional and 4-Directional Braided Composites. Chin. J. Aeronaut. 2007, 20, 327–331. [Google Scholar] [CrossRef]
- Li, D.S.; Lu, X.Z.; Liu, Z.G.; Li, Z. Finite element analysis of thermal conductivity of three dimensional and five directional braided composites. Hangkong Dongli Xuebao 2008, 23, 1455–1460. [Google Scholar]
- Cheng, W.; Zhao, S.G.; Liu, Z.G.; Feng, Z.H.; Yao, C.Z.; Yu, R.L. Thermal property of 3D fiber composites: Experimental and numerical results. Acta Aeronaut. Astronaut. Sin. 2002, 23, 102–105. [Google Scholar]
- Lu, Z.X.; Wang, C.Y.; Xia, B. Finite element analysis of elastic property and thermo-physical properties of three-dimensional and full five-directional braided composites. Acta Mater. Compos. Sin. 2013, 30, 160–167. [Google Scholar]
- Jiang, L.L.; Xu, G.D.; Cheng, S.; Lu, X.-M.; Zeng, T. Finite element analysis of thermo-mechanical properties of 3D braided composites. Appl. Compos. Mater. 2014, 21, 325–340. [Google Scholar] [CrossRef]
- Wang, H.; Cao, M.; Siddique, A.; Sun, B.; Gu, B. Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials. Comput. Mater. Sci. 2017, 138, 77–91. [Google Scholar] [CrossRef]
- Tranchard, P.; Samyn, F.; Duquesne, S.; Estèbe, B.; Bourbigot, S. Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire: Part I—Characterisation of Thermophysical Properties. Materials 2017, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.J.; Fang, W.Z.; Dai, Y.J.; Li, S.; Tao, W.-Q. Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites. Compos. Struct. 2017, 163, 152–167. [Google Scholar] [CrossRef]
- Yu, G.C.; Wu, L.Z.; Feng, L.J.; Yang, W. Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos. Struct. 2016, 149, 213–219. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, J.J.; Jin, L.M.; Gu, B.; Sun, B. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites. Compos. Struct. 2016, 143, 9–22. [Google Scholar] [CrossRef]
- Wei, K.L.; Li, J.; Shi, H.B.; Tang, M. Two-scale prediction of effective thermal conductivity of 3D braided C/C composites considering void defects by asymptotic homogenization method. Appl. Compos. Mater. 2019, 26, 1367–1387. [Google Scholar] [CrossRef]
- Li, P.; Jia, N.; Pei, X.Y.; Wan, Z.; Li, J.; Zheng, Z.; Wu, H. Effects of temperature on bending properties of three-dimensional and five-directional braided composite. Molecules 2019, 24, 3977. [Google Scholar] [CrossRef]
- Zuo, H.M.; Li, D.S.; Jiang, L. High temperature mechanical response and failure analysis of 3D five-directional braided composites with different braiding angles. Materials 2019, 12, 3506. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.M.; Zhou, J.M.; Mei, J.; Liu, J.; Huang, W. Mechanical behavior and failure mechanism of three-dimensional braided composites at different temperatures. Mater. Test. 2020, 62, 612–616. [Google Scholar] [CrossRef]
- Zhai, J.J.; Kong, X.X.; Wang, L.C. Thermo-viscoelastic response of 3D braided composites based on a novel FsMsFE method. Materials 2021, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.Q.; Sun, B.Z.; Gu, B. Temperature and structure effects on the impact damage distribution of 3D braided composites. Sci. Sin. Technol. 2021, 51, 108–118. [Google Scholar]
- Arbaoui, J.; Aucher, J.; Gomina, M.; Breard, J. Investigation of thermal and mechanical properties of three-dimensional braided composite materials. Arch. Metall. Mater. 2022, 67, 1325–1332. [Google Scholar] [CrossRef]
- Fang, J.; Quan, Y.; Dong, B. Improved unit cells to predict anisotropic thermal conductivity of three-dimensional four-directional braided composites by Monte-Carlo method. Int. J. Heat Mass Transf. 2023, 208, 124084. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Xun, L.; Sun, B.; Gu, B. Anisotropic degradation mechanism on low-velocity impact of 3D braided composites after thermo-oxidative ageing. Thin-Walled Struct. 2023, 182, 110204. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, L.Z.; Guo, L.C. Mechanical analysis of 3D braided composites: A finite element model. Compos. Struct. 2004, 64, 399–404. [Google Scholar] [CrossRef]
- Jiang, L.L.; Zeng, T.; Yan, S. Theoretical prediction on the mechanical properties of 3D braided composites using a helix geometry model. Compos. Struct. 2013, 100, 511–516. [Google Scholar] [CrossRef]
- Jiang, L.L.; Xu, M.L.; Li, Z.G.; Zhou, X.; Lu, C.; Zeng, T. Experimental investigation on thermo- physical properties of 3D braided composites. Acta Mater. Compos. Sin. 2017, 34, 2734–2740. [Google Scholar]
- Zhai, J.; Kong, X.; Wang, L.; Yan, S.; Jiang, L.; Cai, Z. Nonlinear Mechanical Property of 3D Braided Composites with Multi-Types Micro-Distortion: A Quantitative Evaluation. Polymers 2023, 15, 1428. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Xu, G.D.; Cheng, S.; Lu, X.M.; Zeng, T. Predicting the thermal conductivity and temperature distribution in 3D braided composites. Compos. Struct. 2014, 108, 578–583. [Google Scholar] [CrossRef]
Component Materials | E33f/GPa | E22f/GPa | G32f/GPa | G12f/GPa | Em/GPa | γ32f | γm |
---|---|---|---|---|---|---|---|
Carbon fiber | 215.6 | 17.21 | 12.92 | 9.3 | — | 0.3 | — |
Matrix | — | — | — | — | 3.45 | — | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.-L.; Li, Z.-G.; Wang, D.-Y.; Zhai, J.-J.; Kong, X.-X. Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature. Polymers 2024, 16, 1166. https://doi.org/10.3390/polym16081166
Jiang L-L, Li Z-G, Wang D-Y, Zhai J-J, Kong X-X. Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature. Polymers. 2024; 16(8):1166. https://doi.org/10.3390/polym16081166
Chicago/Turabian StyleJiang, Li-Li, Zhen-Guo Li, Dong-Ye Wang, Jun-Jun Zhai, and Xiang-Xia Kong. 2024. "Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature" Polymers 16, no. 8: 1166. https://doi.org/10.3390/polym16081166
APA StyleJiang, L. -L., Li, Z. -G., Wang, D. -Y., Zhai, J. -J., & Kong, X. -X. (2024). Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature. Polymers, 16(8), 1166. https://doi.org/10.3390/polym16081166