Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review
Abstract
:1. Introduction
2. Polymethylmethacrylate
2.1. Doping of PMMA with Various Nanoparticles
2.2. Carbon Nanotubes as Materials for Doping into PMMA
2.3. The Use of CNTs to Improve the Strength Characteristics of PMMA
2.4. The Use of PMMA/CNT Composite Polymer Materials to Protect against Electromagnetic Interference and Improve the Electrical Characteristics of the Source Material
3. Theoretical and Experimental Studies of Polymer Composite Materials Based on Polymethylmethacrylate and Carbon Nanotubes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.D.; Surendhar, G.J.; Natrayan, L.; Patil, P.P.; Ram, P.M.B.; Paramasivam, P. Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. J. Nanomater. 2022, 2022, 1280411. [Google Scholar] [CrossRef]
- Talebian, S.; Rodrigues, T.; Neves, J.; Sarmento, B.; Langer, R.; Conde, J. Facts and figures on materials science and nanotechnology progress and investment. ACS Nano 2021, 15, 15940–15952. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, B.S. Nanocomposites—A Review. J. Chem. Chem. Sci. 2020, 5, 506–510. [Google Scholar]
- Le, B.; Khaliq, J.; Huo, D.; Teng, X.; Shyha, I. A Review on Nanocomposites. Part 1: Mechanical Properties. J. Manuf. Sci. Eng. 2020, 142, 100801. [Google Scholar] [CrossRef]
- Egbo, M.N. A fundamental review on composite materials and some of their applications in biomedical engineering. J. King Saud Univ. Eng. Sci. 2020, 33, 557–568. [Google Scholar] [CrossRef]
- Kalmani, P.R.; Rhim, J.W. Nano and nanocomposite Antimicrobial materials for food packaging applications. In Progress in Nano Materials for Food Packaging; Future Science Ltd.: London, UK, 2014; pp. 34–48. [Google Scholar] [CrossRef]
- Pal, R.; Murthy, H.N.N.; Rai, K.S.; Krishna, M. Influence of organo modified nano-clays on mechanical behavior of vinyl aster/glass nano composites. Int. J. Chem. Tech. Res. 2014, 6, 916–928. [Google Scholar]
- Chen, J.; Liu, B.; Gao, X.; Xu, D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv. 2018, 8, 28048–28085. [Google Scholar] [CrossRef] [PubMed]
- Akimov, I.A.; Denisyuk, I.Y.; Meshkov, A.M. Nanocrystals of semiconductors in a polymer matrix—New optical media. Opt. Spectrosc. 1992, 72, 1026–1032. [Google Scholar]
- Soni, S.K.; Thomas, B.; Kar, V.R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546. [Google Scholar] [CrossRef]
- Green, M.J.; Bhabtu, N.; Pasquali, M.; Adams, W.W. Nanotubes as polymers. Polymer 2009, 50, 4979–4997. [Google Scholar] [CrossRef]
- Grady, B.P. Carbon-Nanotube-Polymer Composites: Manufacture, Properties and Applications; Ballet: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yesil, S.; Bayram, G. Poly(ethylene terephthalate)/carbon nanotube composites prepared with chemically treated carbon nanotubes. Polym. Eng. Sci. 2011, 51, 1286–1300. [Google Scholar] [CrossRef]
- Ribeiro, B.; Botelho, E.C.; Costa, M.L.; Bandeira, C.F. Carbon nanotube buckypaper reinforced polymer composites: A review. Polímeros 2017, 27, 247–255. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Liang, J.; Yuan, D.; Zhao, W. Research progress of poly(methyl methacrylate) microspheres: Preparation, functionalization and application. Eur. Polym. J. 2022, 175, 111379. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Said, M.N.A.; Hasbullah, N.A.; Rosdi, M.R.H.; Musa, M.S.; Rusli, A.; Ariffin, A.; Shafiq, M.D. Polymerization and Applications of Poly(methyl methacrylate)–Graphene Oxide Nanocomposites: A Review. ACS Omega 2022, 7, 47490–47503. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Dayneko, S.; Pahlevani, M.; Shi, Y. Highly Efficient Quantum Dot Light-Emitting Diodes by Inserting Multiple Poly(methyl methacrylate) as Electron-Blocking Layers. Adv. Funct. Mater. 2019, 29, 1906742. [Google Scholar] [CrossRef]
- Zvaigzne, M.; Alexandrov, A.; Tkach, A.; Lypenko, D.; Nabiev, I.; Samokhvalov, P. Optimizing the PMMA Electron-Blocking Layer of Quantum Dot Light-Emitting Diodes. Nanomaterials 2021, 11, 2014. [Google Scholar] [CrossRef] [PubMed]
- Frazer, R.Q.; Byron, R.T.; Osborne, P.B.; West, K.P. PMMA: An essential material in medicine and dentistry. J. Long-Term Eff. Med. Implant. 2005, 15, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, A.; Almeida, A.J. Poly(Methyl Methacrylate) (PMMA): Drug Delivery Applications. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; CRC Press: London, UK, 2015. [Google Scholar] [CrossRef]
- Kaur, H.; Thakur, A. Applications of poly (methyl methacrylate) polymer in dentistry: A review. Mater. Today Proceed. 2021, 50, 1619–1625. [Google Scholar] [CrossRef]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Meng, S.; Lin, H.; Correll, M.; Tong, Z. Nanocomposite of Graphene Oxide Encapsulated in Polymethylmethacrylate (PMMA): Pre-Modification, Synthesis, and Latex Stability. J. Compos. Sci. 2020, 4, 118. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Baydogan, N.; Kocacinar, E. Synthesis of Poly(Methyl Methacrylate) Reinforced by Graphene Nanoplates. Key Eng. Mater. 2021, 897, 63–70. [Google Scholar] [CrossRef]
- Alamgir, M.; Mallick, A.; Nayak, G.C.; Tiwari, S.K. Development of PMMA/TiO2 nanocomposites as excellent dental materials. J. Mech. Sci. Technol. 2019, 33, 4755–4760. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 10288. [Google Scholar] [CrossRef] [PubMed]
- Aldabib, J.M.; Ishak, Z.A.M. Effect of hydroxyapatite filler concentration on mechanical properties of poly (methyl methacrylate) denture base. SN Appl. Sci. 2020, 2, 732. [Google Scholar] [CrossRef]
- De Souza Leão, R.; de Moraes, S.L.D.; de Luna Gomes, J.M.; Lemos, C.A.A.; da Silva Casado, B.G.; do Egito Vasconcelos, B.C.; Pellizzer, E.P. Influence of addition of zirconia on PMMA: A systematic review. Mater. Sci. Eng. 2020, 106, 110292. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Haider, J.; Alhotan, A.; Jahantigh, J.; Yates, J. Evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated PMMA nanocomposites. Materials 2020, 13, 2580. [Google Scholar] [CrossRef]
- Wang, R.; Tao, J.; Yu, B.; Dai, L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J. Prosthet. Dent. 2014, 111, 318–326. [Google Scholar] [CrossRef]
- Gad, M.M.; Rahoma, A.; Al-Thobity, A.M.; ArRejaie, A.S. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int. J. Nanomed. 2016, 11, 5633–5643. [Google Scholar] [CrossRef]
- Gad, M.M.A.; Abualsaud, R.; Al-Thobity, A.M.; Almaskin, D.F.; AlZaher, Z.A.; Abushowmi, T.H.; Qaw, M.S.; Akhtar, S.; Al-Harbi, F.A. Effect of SiO2 nanoparticles addition on the flexural strength of repaired acrylic denture base. Eur. J. Dent. 2020, 14, 019–023. [Google Scholar] [CrossRef]
- Bacali, C.; Badea, M.; Moldovan, M.; Sarosi, C.; Nastase, V.; Baldea, I.; Chiorean, R.S.; Constantiniuc, M. The influence of graphene in improvement of physico-mechanical properties in PMMA denture base resins. Materials 2019, 12, 2335. [Google Scholar] [CrossRef]
- Lade, J.; Kallluri, A.; Baloji, D. Characterization of Polymethyl Methacrylate (PMMA) composites with Graphite. E3S Web Conf. 2023, 430, 01143. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, M.S.; Dresselhaus, G. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1999; p. 251. [Google Scholar]
- Corbett, J.; McKeown, P.A.; Peggs, G.N.; Whatmore, R. Nanotechnology: International Developments and Emerging Products. CIRP Ann. 2000, 49, 523–545. [Google Scholar] [CrossRef]
- Zaporotskova, I.V. Uglerodnye i Neuglerodnye Nanomaterialy i Kompozitnye Struktury na Ikh Osnove: Stroenie i Elektronnye Svoistva [Carbon and Non-Carbon Nanotubes and Composite Structures on Their Basis: Structure and Electronic Properties]; Izd-vo VolGU: Volgograd, Russia, 2009; p. 490. [Google Scholar]
- Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Application; Springer: Berlin/Heidelberg, Germany, 2000; p. 464. [Google Scholar]
- D’yachkov, P.N. Elektronnye Svoistva i Primenenie Nanotrubok [Electronic Prop Erties and Applications of Nanotubes]; BINOM, Laboratoriya Znanii: Moscow, Russia, 2010; p. 488. [Google Scholar]
- Marvin, L. Nanotubes, Nanoscience, and Nanotechnology. Mater. Sci. Eng. C 2000, 15, 1–11. [Google Scholar]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon Lett. 2013, 14, 131–144. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, I.; Kumar, A.; Rao, P.K.; Bhatnagar, P.K. Effect of physicochemical properties of analyte on the selectivity of polymethylmethacrylate: Carbon. nanotube based composite sensor for detection of volatile organic compounds. Mater. Sci. Semicond. Process. 2016, 41, 26–31. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, I.; Kumar, J.; Madhwal, D.; Bhatnagar, P.K.; Mathur, P.C.; Bernardo, C.A.; Paiva, M.C. An environment friendly. highly sensitive ethanol vapor sensor based on polymethylethacrylate: Functionalized-multiwalled. carbon nanotubes composite. Adv. Sci. Eng. Med. 2013, 5, 1062–1066. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S.; Lee, S.-Y.; Hussain, M.; Choa, Y.-H. Enhancement of conductive pathway of functionalized CNT dispersed poly(methylmethacrylate) nanocomposites. J. Nanosci. Nanotechnol. 2013, 13, 3936–3943. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; An, S.Y.; Lim, J.S.; Kim, D. Transparent conductive thin film synthesis based on single-walled carbon nanotubes dispersion containing polymethylmethacrylate binder. J. Nanosci. Nanotechnol. 2011, 11, 6345–6349. [Google Scholar] [CrossRef] [PubMed]
- Mazov, I.N.; Kuznetsov, V.L.; Moseenkov, S.I.; Ishchenko, A.V.; Romanenko, A.I.; Anikeeva, O.B.; Buryakov, T.I.; Korovin, E.Y.; Zhuravlev, V.A.; Suslyaev, V.I. Electrophysical and Electromagnetic Properties of Pure mwnts and MWNT/PMMA Composite Materials Depending on Their Structure. Fuller. Nanotub. Carbon Nanostructures 2010, 18, 505–515. [Google Scholar] [CrossRef]
- Chebil, A.; Doudou, B.B.; Dridi, C.; Dammak, M. Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study. Mater. Sci. Eng. B 2019, 243, 125–130. [Google Scholar] [CrossRef]
- Kil, T.; Jin, D.W.; Yang, B.; Lee, H.K. A comprehensive micromechanical and experimental study of the electrical conductivity of polymeric composites incorporating carbon nanotube and carbon fiber. Compos. Struct. 2021, 268, 114002. [Google Scholar] [CrossRef]
- Kim, G.M.; Yang, B.J.; Cho, K.J.; Kim, E.M.; Lee, H.K. Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites. Compos. Struct. 2017, 164, 32–42. [Google Scholar] [CrossRef]
- Wang, B.; Liang, P.; Li, W.; Gao, Y. Electrical Conductivity of Poly(Methyl Methacrylate) Nanocomposites Containing Interconnected Carbon Nanohybrid Network Based on Pickering Emulsion Strategy. Soft Mater. 2021, 19, 468–479. [Google Scholar] [CrossRef]
- Mahmood, W. The Effect of Incorporating Carbon Nanotubes on Impact, Transverse Strength, Hardness, and Roughness to High Impact Denture Base Material. J. Baghdad Coll. Dent. 2018, 27, 96–99. [Google Scholar] [CrossRef]
- Asiri, A.M.; Mohammad, A. Applications of Nanocomposite Materials in Dentistry; A volume in Woodhead Publishing Series in Biomaterials; Elsevier: Cambridge, MA, USA, 2018; ISBN 978-0-12-813742-0. [Google Scholar]
- Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: Effects on mechanical and thermal properties. J. Mech. Behav. Biomed. Mater. 2010, 3, 136–145. [Google Scholar] [CrossRef]
- Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 2287–2292. [Google Scholar] [CrossRef]
- Raval, J.P.; Joshi, P.; Chejara, D.R. 9—Carbon nanotube for targeted drug delivery. In Applications of Nanocomposite Materials in Drug Delivery; Elsevier: London, UK, 2018; pp. 203–216. [Google Scholar]
- Mathur, R.B.; Pande, S.; Singh, B.P.; Dhami, T.L. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Compos. 2008, 29, 717–727. [Google Scholar] [CrossRef]
- Jindal, P.; Sain, M.; Kumar, N. Mechanical Characterization of PMMA/MWCNT Composites Under Static and Dynamic Loading Conditions. Mater. Today Proc. 2015, 2, 1364–1372. [Google Scholar] [CrossRef]
- Kalakonda, P.; Bann, S. Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol. Sci. Appl. 2017, 10, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mohamadian, N.; Ramhormozi, M.Z.; Wood, D.A.; Ashena, R. Reinforcement of oil and gas wellbore cements with a methyl methacrylate/carbon-nanotube polymer nanocomposite additive. Cem. Concr. Compos. 2020, 114, 103763. [Google Scholar] [CrossRef]
- David, O.B.; Banks-Sills, L.; Aboudi, J.; Fourman, V. Evaluation of the Mechanical Properties of PMMA Reinforced with Carbon Nanotubes—Experiments and Modeling. Exp. Mech. 2014, 54, 175–186. [Google Scholar] [CrossRef]
- Navidfar, A.; Azdast, T.; Ghavidel, A.K. Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly methyl methacrylate nanocomposites. J. Appl. Pol. Sci. 2016, 133, 43738. [Google Scholar] [CrossRef]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Mater. Lett. 2018, 240, 9–12. [Google Scholar]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Hamzah, E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. J. Mech. Behav. Biomed. Mater. 2018, 82, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Pahlevanzadeh, F.; Bakhsheshi-Rad, H.R.; Kharaziha, M.; Kasiri-Asgarani, M.; Omidi, M.; Razzaghi, M.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. J. Mech. Behav. Biomed. Mater. 2021, 116, 104320. [Google Scholar] [CrossRef]
- Yuan, H.; Xiong, Y.; Shen, Q.; Luo, G.; Zhou, D.; Liu, L. Synthesis and electromagnetic absorbing performances of CNTs/PMMA laminated nanocomposite foams in X-band. Compos. Part A Appl. Sci. Manuf. 2018, 107, 334–341. [Google Scholar] [CrossRef]
- Zhou, D.; Yu, Z.; Yuan, H.; Luo, G.; Hu, R.; Jiang, X.; Shen, Q. Achieving wideband electromagnetic wave absorbing performance for PMMA-based composites foam by designing the alternating directional (AD) microporous structure. J. Home Page Mater. Today Adv. 2023, 19, 100395. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Tian, N.; You, C.; Yang, Y. Foam-structured carbon materials and composites for electromagnetic interference shielding: Design principles and structural evolution. Carbon 2024, 217, 118608. [Google Scholar] [CrossRef]
- Zhou, D.; Yuan, H.; Yu, Z.; Guo, W.; Xiong, Y.; Luo, G.; Shen, Q. Broadband electromagnetic absorbing performance by constructing alternate gradient structure (AGS) for PMMA-based foams. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106557. [Google Scholar] [CrossRef]
- Tan, W.K.; Matsubara, Y.; Yokoi, A.; Kawamura, G.; Matsuda, A.; Sugiyama, I.; Shibata, N.; Ikuhara, Y.; Muto, H. Transparent conductive polymer composites obtained via electrostatically assembled carbon nanotubes–poly (methyl methacrylate) composite particles. Adv. Powder Technol. 2022, 33, 103528. [Google Scholar] [CrossRef]
- Li, T.; Zhao, G.; Zhang, L.; Wang, G.; Li, B.; Gong, J. Ultralow-threshold and efficient EMI shielding PMMA/MWCNTs composite foams with segregated conductive network and gradient cells. Polym. Lett. 2020, 14, 685–703. [Google Scholar] [CrossRef]
- Imran, S.M.; Go, G.W.-M.; Hussain, M.; Al-Harthi, M.A. Multiwalled Carbon Nanotube-Coated Poly-Methyl Methacrylate Dispersed Thermoplastic Polyurethane Composites for Pressure-Sensitive Applications. Macromol 2022, 2, 211–224. [Google Scholar] [CrossRef]
- Blokhin, A.; Stolyarov, R.; Burmistrov, I.N.; Gorshkov, N.V. Increasing electrical conductivity of PMMA-MWCNT composites by gas phase iodination. Compos. Sci. Technol. 2021, 214, 108972. [Google Scholar] [CrossRef]
- Kuromatsu, S.; Watanabe, T.; Nonoguchi, Y.; Suga, R.; Hashimoto, O.; Koh, S. Single-Wall Carbon Nanotube-based Flexible Monopole Antenna Fabricated using Poly (methyl methacrylate)-supported Transfer Technique. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 866–868. [Google Scholar] [CrossRef]
- Ziani, D.; Mohammed, B.; Rouissat, M.; Mokaddem, A. Design optimization for microstrip antennas based on polymethyl methacrylate (PMMA) substrate and carbon nanotube (CNT) conductive material in sub-6 Ghz band. Beni-Suef University. J. Basic Appl. Sci. 2024, 13, 26. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Elbakyan, L.S. Obtaining New Dental Materials Reinforced with Carbon Nanotubes. J. Nano-Electron. Phys. 2014, 6, 03008-1–03008-3. [Google Scholar]
- Elbakyan, L.S.; Zaporotskova, I.V. New Dental Materials Reinforced by Carbon Nanotubes: The Technology of Obtaining and the Study of Properties. J. Vestnik Volgogradskogo Gos. Univ. 2014, 6, 89–94. [Google Scholar]
- Electronic motion: Density functional theory (dft). In Ideas of Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2007; pp. 567–614. [CrossRef]
- Hopmann, K.H.; Himo, F. Quantum Chemical Modeling of Enzymatic Reactions—Applications to Epoxide-Transforming Enzymes. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 719–747. [Google Scholar] [CrossRef]
- Elbakyan, L.S.; Zaporotskova, I.V.; Belonenko, M.B. Nanocomposites based on polymethylmethacrylate doped with carbon nanotubes: Some electrophysical studies. J. Perspect. Mater. 2017, 4, 16–22. [Google Scholar]
- Zaporotskova, I.; Elbakyan, L.; Bakhracheva, Y. Research of strength and conducting properties of composite material modified by carbon nanotubes. J. Phys. Conf. Ser. 2019, 1260, 062027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbakyan, L.; Zaporotskova, I. Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review. Polymers 2024, 16, 1242. https://doi.org/10.3390/polym16091242
Elbakyan L, Zaporotskova I. Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review. Polymers. 2024; 16(9):1242. https://doi.org/10.3390/polym16091242
Chicago/Turabian StyleElbakyan, Lusine, and Irina Zaporotskova. 2024. "Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review" Polymers 16, no. 9: 1242. https://doi.org/10.3390/polym16091242
APA StyleElbakyan, L., & Zaporotskova, I. (2024). Composite Nanomaterials Based on Polymethylmethacrylate Doped with Carbon Nanotubes and Nanoparticles: A Review. Polymers, 16(9), 1242. https://doi.org/10.3390/polym16091242