Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.2.1. Rheological Study
2.2.2. Morphological Characterization
2.3. Coextrusion of Multilayer Films
2.3.1. Cast Coextrusion Setup for Flow Stability Investigation
2.3.2. Development and Design of the New Blown Coextrusion Die
2.3.3. Multilayer Film Preparation
- ℎnom A is the nominal thickness of the A material layer.
- ℎfilm is the total thickness of the multilayer film.
- vol%A is the volume percentage of A in the multilayer film.
- nA layers is the number of A layers in the multilayer film.
3. Results and Discussion
3.1. Rheological Properties
3.2. Rheological Contrast and Flow Stability Investigation by Cast Coextrusion
- Stable: referring to films without any visible defects or instabilities.
- Wavy: regarding films with flow instabilities appearing as waves across the film surface.
- Unstable: describing films as having important defects.
3.3. Stability Investigation of Blown Coextrusion
3.4. Transmission Electron Microscopy (TEM) Analysis of Multilayer Films
3.5. Extensional Rheology of Multilayer Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, X.; Chen, D.; Zheng, Y.; Shen, J.; Guo, S.; Harkin-Jones, E. Multilayered Assembly of Poly(Vinylidene Fluoride) and Poly(Methyl Methacrylate) for Achieving Multi-Shape Memory Effects. Chem. Eng. J. 2019, 362, 190–198. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, R.; Shen, J.; Guo, S. Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone. ACS Appl. Mater. Interfaces 2016, 8, 1371–1380. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Hiltner, A.; Baer, E.; Korley, L.T. Deformation of Confined Poly(Ethylene Oxide) in Multilayer Films. ACS Appl. Mater. Interfaces 2012, 4, 2218–2227. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.; Olah, A.; Baer, E. High Oxygen Barrier Multilayer EVOH/LDPE Film/Foam. J. Appl. Polym. Sci. 2018, 135, 46425. [Google Scholar] [CrossRef]
- Gupta, M.; Yuan, L.-Y.; Deans, T.; Baer, E.; Hiltner, A.; Schiraldi, D.A. Structure and Gas Barrier Properties of Poly(Propylene-Graft-Maleic Anhydride)/Phosphate Glass Composites Prepared by Microlayer Coextrusion. Macromolecules 2010, 43, 4230–4239. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, J.; Guo, S.; Sue, H.-J. Confined Distribution of Conductive Particles in Polyvinylidene Fluoride-Based Multilayered Dielectrics: Toward High Permittivity and Breakdown Strength. Carbon 2015, 84, 355–364. [Google Scholar] [CrossRef]
- Baer, E.; Zhu, L. 50th Anniversary Perspective: Dielectric Phenomena in Polymers and Multilayered Dielectric Films. Macromolecules 2017, 50, 2239–2256. [Google Scholar] [CrossRef]
- Li, Z.; Sun, R.; Rahman, M.A.; Feng, J.; Olah, A.; Baer, E. Scaling Effects on the Optical Properties of Patterned Nano-Layered Shape Memory Films. Polymer 2019, 167, 182–192. [Google Scholar] [CrossRef]
- Kazmierczak, T.; Song, H.; Hiltner, A.; Baer, E. Polymeric One-Dimensional Photonic Crystals by Continuous Coextrusion. Macromol. Rapid Commun. 2007, 28, 2210–2216. [Google Scholar] [CrossRef]
- Jin, Y.; Tai, H.; Hiltner, A.; Baer, E.; Shirk, J.S. New Class of Bioinspired Lenses with a Gradient Refractive Index. J. Appl. Polym. Sci. 2006, 103, 1834–1841. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, H.; Maazouz, A.; Lamnawar, K. Interfacial Phenomena in Multi-Micro-/Nanolayered Polymer Coextrusion: A review of fundamental and engineering aspects. Polymers 2021, 13, 417. [Google Scholar] [CrossRef] [PubMed]
- Dooley, J. Viscoelastic Flow Effects in Miltilayer Polymer Coextrusion. Ph.D. Thesis, Teichnische Universiteit Eindhoven, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Lamnawar, K.; Zhang, H.; Maazouz, A. Coextrusion of multilayer structures, interfacial phenomena. Encycl. Polym. Sci. Technol. 2013. [Google Scholar] [CrossRef]
- Maes, C.; Luyten, W.; Herremans, G.; Peeters, R.; Carleer, R.; Buntinx, M. Recent updates on the barrier properties of Ethylene Vinyl Alcohol copolymer (EVOH): A review. Polym. Rev. 2018, 58, 209–246. [Google Scholar] [CrossRef]
- Carneiro, O. Design of Extrusion Forming Tools; Smithers Rapra: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Crabtree, S.; Dooley, J.; Robacki, J.; Lee, P.C.; Wrisley, R.; Pavlicek, C. Producing microlayer blow molded structures using layer multiplication and unique die head technology. In Proceedings of the Society of Plastics Engineers—27th Annual Blow Molding Conference ABC, Atlanta, GA, USA, 8–9 October 2011. [Google Scholar]
- Dooley, J.; Robacki, J.; Jenkins, S.; Wrisley, R.; Lee, P.C. Development of Microlayer Blown Film Technology by Combining Film Die and Layer Multiplication Concepts. Polym. Eng. Sci. 2016, 56, 598–604. [Google Scholar] [CrossRef]
- Steinmetz, E.; Scanlon, S.; Schneider, T.; Maia, J. Multi-Layer Co-Extrusion Blow Molding. Int. Polym. Process. 2023, 39, 202–209. [Google Scholar] [CrossRef]
- Hong, W.; Ji, Y.; Ran, L.; Yu, G.; Qin, J.; Wu, H.; Guo, S.; Li, C. Development of Nanolayer Blown Film Technology. Ind. Eng. Chem. Res. 2022, 61, 17137–17144. [Google Scholar] [CrossRef]
- Wang, H.; Keum, J.K.; Hiltner, A.; Baer, E. Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 2009, 42, 7055–7066. [Google Scholar] [CrossRef]
- Wang, H.; Keum, J.K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 2009, 323, 757–760. [Google Scholar] [CrossRef]
- Zhang, G.; Lee, P.C.; Jenkins, S.; Dooley, J.; Baer, E. The effect of confined spherulite morphology of high-density polyethylene and polypropylene on their gas barrier properties in multilayered film systems. Polymer 2014, 55, 4521–4530. [Google Scholar] [CrossRef]
- Mackey, M.; Flandin, L.; Hiltner, A.; Baer, E. Confined crystallization of PVDF and a PVDF-TFE copolymer in nanolayered films. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1750–1761. [Google Scholar] [CrossRef]
- Ponting, M.; Lin, Y.; Keum, J.K.; Hiltner, A.; Baer, E. Effect of Substrate on the Isothermal Crystallization Kinetics of Confined Poly(ε-caprolactone) Nanolayers. Macromolecules 2010, 43, 8619–8627. [Google Scholar] [CrossRef]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A review. Recycling 2017, 3, 1. [Google Scholar] [CrossRef]
- Polymer Processing Instabilities; CRC Press: Boca Raton, FL, USA, 2004. [CrossRef]
- Schrenk, W.J.; Bradley, N.L.; Alfrey, T.; Maack, H. Interfacial flow instability in multilayer coextrusion. Polym. Eng. Sci. 1978, 18, 620–623. [Google Scholar] [CrossRef]
- Tzoganakis, C.; Perdikoulias, J. Interfacial instabilities in coextrusion flows of low-density polyethylenes: Experimental studies. Polym. Eng. Sci. 2000, 40, 1056–1064. [Google Scholar] [CrossRef]
- Lamnawar, K.; Bousmina, M.; Maazouz, A. 2D Encapsulation in Multiphase Polymers: Role of Viscoelastic, Geometrical and Interfacial Properties. Macromolecules 2011, 45, 441–454. [Google Scholar] [CrossRef]
- Lee, B.-L.; White, J.L. An Experimental Study of Rheological Properties of Polymer Melts in Laminar Shear Flow and of Interface Deformation and Its Mechanisms in Two-Phase Stratified Flow. Trans. Soc. Rheol. 1974, 18, 467–492. [Google Scholar] [CrossRef]
- Cantor, K. Blown Film Extrusion; Hanser: Munich, Germany, 2011. [Google Scholar]
- Han, C.D.; Park, J.Y. Studies on blown film extrusion. III. Bubble instability. J. Appl. Polym. Sci. 1975, 19, 3291–3297. [Google Scholar] [CrossRef]
- Han, C.D.; Shetty, R. Flow instability in tubular Film blowing. 1. Experimental Study. Ind. Eng. Chem. Fundam. 1977, 16, 49–56. [Google Scholar] [CrossRef]
- Kanai, T.; White, J.L. Kinematics, dynamics and stability of the tubular film extrusion of various polyethylenes. Polym. Eng. Sci. 1984, 24, 1185–1201. [Google Scholar] [CrossRef]
- Minoshima, W.; White, J.L. Instability phenomena in tubular film, and melt spinning of rheologically characterized high density, low density and linear low density polyethylenes. J. Non-Newton. Fluid Mech. 1986, 19, 275–302. [Google Scholar] [CrossRef]
- Ghaneh-Fard, A.; Carreau, P.J.; Lafleur, P.G. Study of instabilities in film blowing. AIChE J. 1996, 42, 1388–1396. [Google Scholar] [CrossRef]
- Walha, F.; Lamnawar, K.; Maazouz, A.; Jaziri, M. Biosourced Blends Based on Poly (Lactic Acid) and Polyamide 11: Structure-Properties Relationships and Enhancement of Film Blowing Processability. Adv. Polym. Technol. 2017, 37, 2061–2074. [Google Scholar] [CrossRef]
- Cogswell, F.N. Converging flow of polymer melts in extrusion dies. Polym. Eng. Sci. 1972, 12, 64–73. [Google Scholar] [CrossRef]
- Karagiannis, A.; Mavridis, H.; Hrymak, A.N.; Vlachopoulos, J. Interface determination in bicomponent extrusion. Polym. Eng. Sci. 1988, 28, 982–988. [Google Scholar] [CrossRef]
- Messin, T.; Marais, S.; Follain, N.; Chappey, C.; Guinault, A.; Miquelard-Garnier, G.; Delpouve, N.; Gaucher, V.; Sollogoub, C. Impact of water and thermal induced crystallizations in a PC/MXD6 multilayer film on barrier properties. Eur. Polym. J. 2018, 111, 152–160. [Google Scholar] [CrossRef]
- Lu, B.; Alcouffe, P.; Sudre, G.; Pruvost, S.; Serghei, A.; Liu, C.; Maazouz, A.; Lamnawar, K. Unveiling the effects of in situ Layer–Layer interfacial reaction in multilayer polymer films via multilayered assembly: From microlayers to nanolayers. Macromol. Mater. Eng. 2020, 305, 2000076. [Google Scholar] [CrossRef]
Abbreviation | Material | Manufacturer Name | Density (g/cm3) | MFR (g/10 min) | MFR Test Conditions |
---|---|---|---|---|---|
PE | LLDPE | Marlex® D139 | 0.918 | 1 | 190 °C/2.16 kg |
EVOH | EVOH | EVAL™ F101B | 1.19 | 1.16 | 190 °C/2.16 kg |
Temperature Profile (°C) | ||||
---|---|---|---|---|
Extruder Zone 1 | Extruder Zone 2 | Extruder Zone 3 | Feedblock | Die |
220 | 220 | 220 | 210 | 200 |
PE (%) | EVOH (%) |
---|---|
88 | 12 |
92 | 8 |
96 | 4 |
Number of Multiplier Elements | Total Number of Layers | h nom. EVOH 12% (nm) | h nom. EVOH 8% (nm) | h nom. EVOH 4% (nm) |
---|---|---|---|---|
0 | 3 | 18,000 | 12,000 | 6000 |
6 | 129 | 281 | 188 | 94 |
9 | 1025 | 35 | 23 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vozikis, L.; Mani, S.; Maazouz, A.; Lamnawar, K. Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability. Polymers 2025, 17, 57. https://doi.org/10.3390/polym17010057
Vozikis L, Mani S, Maazouz A, Lamnawar K. Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability. Polymers. 2025; 17(1):57. https://doi.org/10.3390/polym17010057
Chicago/Turabian StyleVozikis, Lazaros, Skander Mani, Abderrahim Maazouz, and Khalid Lamnawar. 2025. "Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability" Polymers 17, no. 1: 57. https://doi.org/10.3390/polym17010057
APA StyleVozikis, L., Mani, S., Maazouz, A., & Lamnawar, K. (2025). Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability. Polymers, 17(1), 57. https://doi.org/10.3390/polym17010057