Enhanced Tribological and Mechanical Properties of Copper-Modified Basalt-Reinforced Epoxy Composites
Abstract
:1. Introduction
2. Materials, Samples Manufacturing and Properties
2.1. Basalt Fiber Reinforced Polymer Composites with Cooper Powder (BFRP+Cu)
2.2. The Ball Sample
3. Experimental Method and Device
3.1. Evaluation of Mechanical Properties of BFRP Samples
3.2. Pin-on-Disk Test
Wear Calculation in the Ball-on-Disk Configuration
4. Experimental Results and Discussion
- Organization of the raw data: all the values obtained from the mechanical tests (e.g., tensile and flexural strength, modulus of elasticity) and tribological tests (coefficient of friction, wear rate, temperatures in the coupling) are collected, and are organized in tables for ease of access and further analysis. Values considered outliers were identified and eliminated by comparing them to the acceptable limits for each test, such as by statistical methods (mean ± 2 standard deviations).
- Statistical analysis: The mean, standard deviation, and confidence interval were calculated for each data set to obtain an overview of the variability and consistency of the results. Since we have different data sets (e.g., different materials or test conditions), we used ANOVA statistical tests to assess the significance of the observed differences.
4.1. Flexural Strength and E-Modulus of BFRP Laminates
4.2. Tensile Strength of BFRP Laminates
4.3. Design of the Experiments (DOE) and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Bere, P.; Contiu, G.; Dudescu, M.C.; Filip, D. Tribo-Mechanical Investigation of Glass Fiber Reinforced Polymer Composites under Dry Conditions. Polymers 2023, 15, 2733. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, A.; Nayak, S.Y.; Heckadka, S.S.; Pramod, J.J. Mechanical behavior of basalt-reinforced epoxy composites modified with biomass-derived seashell powder. Biomass Convers. Biorefinery 2023, 14, 26281–26291. [Google Scholar] [CrossRef]
- Manoharan, S.; Vijay, R.; Singaravelu, D.L.; Krishnaraj, S.; Suresha, B. Tribological characterization of recycled basalt-aramid fiber reinforced hybrid friction composites using grey-based Taguchi approach. Mater. Res. Express 2019, 6, 065301. [Google Scholar] [CrossRef]
- Greco, A.; Maffezzoli, A.; Casciaro, G.; Caretto, F. Mechanical properties of basalt fibers and their adhesion to polypropylene matrices. Compos. Part B Eng. 2014, 67, 233–238. [Google Scholar] [CrossRef]
- Wang, G.J.; Liu, Y.W.; Guo, Y.J.; Zhang, Z.X.; Xu, M.X.; Yang, Z.X. Surface modification and characterizations of basalt fibers with non-thermal plasma. Surf. Coat. Technol. 2007, 201, 6565–6568. [Google Scholar] [CrossRef]
- Kim, M.T.; Rhee, K.Y.; Park, S.J.; Hui, D. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Compos. Part B Eng. 2012, 43, 2298–2302. [Google Scholar] [CrossRef]
- Wei, B.; Song, S.; Cao, H. Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Mater. Des. 2011, 32, 4180–4186. [Google Scholar] [CrossRef]
- Kim, M.T.; Kim, M.H.; Rhee, K.Y.; Park, S.J. Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites. Compos. Part B Eng. 2011, 42, 499–504. [Google Scholar] [CrossRef]
- Subagia, I.A.; Tijing, L.D.; Kim, Y.; Kim, C.S.; Vista, F.P., IV; Shon, H.K. Mechanical performance of multiscale basalt fiber–epoxy laminates containing tourmaline micro/nano particles. Compos. Part B Eng. 2014, 58, 611–617. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Bulut, M. Mechanical characterization of Basalt/epoxy composite laminates containing graphene nanopellets. Compos. Part B Eng. 2017, 122, 71–78. [Google Scholar] [CrossRef]
- Chairman, C.A.; Kumaresh Babu, S.P. Mechanical and abrasive wear behavior of glass and basalt fabric-reinforced epoxy composites. J. Appl. Polym. Sci. 2013, 130, 120–130. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A. Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. J. Compos. Mater. 2014, 48, 1121–1130. [Google Scholar] [CrossRef]
- Scalici, T.; Pitarresi, G.; Badagliacco, D.; Fiore, V.; Valenza, A. Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques. Compos. Part B Eng. 2016, 104, 35–43. [Google Scholar] [CrossRef]
- Rybin, V.A.; Utkin, A.V.; Baklanova, N.I. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Akinci, A.; Yilmaz, S.; Sen, U. Wear behavior of basalt filled low density polyethylene composites. Appl. Compos. Mater. 2012, 19, 499–511. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Pop, G.; Cioaza, M.; Popa, F.; Lazarescu, L.; Contiu, G. Experimental Investigation of the Tribological Behaviors of Carbon Fiber Reinforced Polymer Composites under Boundary Lubrication. Polymers 2022, 14, 3716. [Google Scholar] [CrossRef] [PubMed]
- Vannan, S.E.; Vizhian, S.P. Dry sliding wear behaviour of basalt short fiber reinforced aluminium metal matrix composites. Appl. Mech. Mater. 2014, 592, 1285–1290. [Google Scholar] [CrossRef]
- Chai, R.; Zhu, W.; Li, Q.; Zou, H.; Han, Y.; Zhao, Y.; Ran, X. Effect of Basalt Fiber Content on Mechanical and Tribological Properties of Copper-Matrix Composites. Metals 2022, 12, 1925. [Google Scholar] [CrossRef]
- Wang, B.; Yu, S.; Mao, J.; Wang, Y.; Li, M.; Li, X. Effect of basalt fiber on tribological and mechanical properties of polyether-ether-ketone (PEEK) composites. Compos. Struct. 2021, 266, 113847. [Google Scholar] [CrossRef]
- Lim, S.C.; Ashby, M.F.; Brunton, J.H. Wear-rate transitions and their relationship to wear mechanisms. Acta Metall. 1987, 35, 1343–1348. [Google Scholar] [CrossRef]
- Birleanu, C.; Cioaza, M.; Serdean, F.; Pustan, M.; Bere, P.; Contiu, G. Tribological investigation of glass fiber reinforced polymer composites against 52100 chrome alloy steel based on ELECTRE decision-making method. Polymers 2023, 16, 62. [Google Scholar] [CrossRef]
- Udroiu, R. New methodology for evaluating surface quality of experimental aerodynamic models manufactured by polymer jetting additive manufacturing. Polymers 2022, 14, 371. [Google Scholar] [CrossRef] [PubMed]
- Udroiu, R. Quality Analysis of Micro-Holes Made by Polymer Jetting Additive Manufacturing. Polymers 2023, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Popișter, F.; Goia, H.Ș.; Ciudin, P.; Dragomir, D. Experimental Study of a 3D Printing Strategy for Polymer-Based Parts for Drone Equipment Using Bladeless Technology. Polymers 2024, 16, 533. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Rhee, K.Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Compos. Part B Eng. 2020, 192, 108011. [Google Scholar] [CrossRef]
- Bulut, M.; Bozkurt, Ö.Y.; Erkliğ, A.; Yaykaşlı, H.; Özbek, Ö. Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arab. J. Sci. Eng. 2020, 45, 1017–1033. [Google Scholar] [CrossRef]
- Czigány, T.; Vad, J.; Pölöskei, K. Basalt fiber as a reinforcement of polymer composites. Period. Polytech. Mech. Eng. 2005, 49, 3–14. [Google Scholar]
- Popișter, F.; Dragomir, M.; Ciudin, P.; Goia, H.Ș. Empowering Rehabilitation: Design and Structural Analysis of a Low-Cost 3D-Printed Smart Orthosis. Polymers 2024, 16, 1303. [Google Scholar] [CrossRef] [PubMed]
- Parnas, R.; Shaw, M.T.; Liu, Q. Basalt Fiber Reinforced Polymer Composites; No. NETCR63; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2007. [Google Scholar]
Composite Laminates | Coding for Laminates | Basalt Fiber (wf.%) | Epoxy Resin (wf.%) | Copper Powder (wf.%) |
---|---|---|---|---|
Epoxy/basalt fiber reinforced polymer with 0 wf.% copper powder | BFRP0 | 50 | 50 | 0 |
Epoxy/basalt fiber reinforced polymer with 5 wf.% copper powder | BFRP5 | 50 | 45 | 5 |
Epoxy/basalt fiber reinforced polymer with 10 wf.% copper powder | BFRP10 | 50 | 40 | 10 |
Epoxy/basalt fiber reinforced polymer with 15 wf.% copper powder | BFRP15 | 50 | 35 | 15 |
Ball Type (12.7 mm) | Chemical Composition [%] | Mechanical Properties of Balls Used in the Test | |||||
---|---|---|---|---|---|---|---|
Hardness (HRC) Scale | Compressive Strength (MPa) | Yield Strength (MPa) | Young’s Modulus (GPa) | Poisson’s Ratio | Roughness Ra (µm) | ||
52100 High quality carbon steel alloyed with chromium ρ = 7.81 g/cm3 | Fe: 96.5–97.3 C: 0.98–1.1 Si: 0.15–0.35 Cr: 1.4–1.6 Mn: 0.25–0.45 P and Si | 54–58 | 2100–2200 | 2000 | 200 | 0.3 | 0.282–0.30 |
Parameters | Operating Conditions |
---|---|
Load (F) | 10, 20, 30 N |
Sliding speed (v) | 0.1, 0.25, 0.36 m s−1 |
Rotational speed (rpm) | Max 215 (±3) rpm |
Relative humidity RH% (RH) | 45 (±5)% |
Starting temperature (To) | 22 (±2) °C |
Test duration (t) | 120 min |
Lubricating conditions | Dry friction |
Disk/ball materials | Polymer composites reinforced with basalt fibers and copper powder/Chromium alloyed carbon steel balls 52100 |
Average roughness of the disk surface (Ra disk) | 0.38 µm |
Specimen Type | Flexure Stress (MPa) | Flexure Strain (%) | E-Modulus (MPa) |
---|---|---|---|
BFRP0 | 133.23 | 1.29 | 10,313.04 |
BFRP5 | 157.34 | 1.57 | 10,011.46 |
BFRP10 | 140.28 | 1.49 | 9410.07 |
BFRP15 | 150.82 | 1.82 | 8287.20 |
Specimen Type | Tensile Strength (MPa) | Tensile Strain at Tensile Strength (mm/mm) | E-Modulus (MPa) |
---|---|---|---|
BFRP0 | 329.2 | 0.0184 | 20,840 |
BFRP5 | 462 | 0.0274 | 18,360 |
BFRP10 | 458.6 | 0.0276 | 19,600 |
BFRP15 | 481.4 | 0.028 | 20,680 |
Targets | Cu Weight Fraction, wf% | Applied Load, F | Sliding Speed, v | |||
---|---|---|---|---|---|---|
Symbol | Value [%] | Symbol | Value [N] | Symbol | Value [m/s] | |
Coefficient of friction Specific wear rate Temperature | 1 | 0 | 1 | 10 | 1 | 0.10 |
2 | 5 | 2 | 20 | 2 | 0.25 | |
3 | 10 | 3 | 30 | 3 | 0.36 | |
4 | 15 | - | - | - | - |
Experimental Parameters | Optimizing Parameters | |||||
---|---|---|---|---|---|---|
Exp. No. | Applied Load F [N] | Sliding Speed v [m/s] | Copper Content Cu wf [%] | Specific Wear Rate K [10−5 mm3 (N m)−¹] | Coefficient of Friction (µ) Average of the Last 60 min | Temperature Average of the Last 60 min [°C] |
1 | 10 | 0.1 | 0 | 3.247 | 0.36 | 30.87 |
2 | 10 | 0.1 | 5 | 32.133 | 0.61 | 29.96 |
3 | 10 | 0.1 | 10 | 11.0401 | 0.66 | 29.78 |
4 | 10 | 0.1 | 15 | 10.245 | 0.7 | 27.68 |
5 | 10 | 0.25 | 0 | 2.695 | 0.31 | 32.35 |
6 | 10 | 0.25 | 5 | 14.3962 | 0.35 | 33.06 |
7 | 10 | 0.25 | 10 | 55.707 | 0.56 | 38.45 |
8 | 10 | 0.25 | 15 | 34.4851 | 0.56 | 38.32 |
9 | 10 | 0.36 | 0 | 16.022 | 0.28 | 36.87 |
10 | 10 | 0.36 | 5 | 38.1892 | 0.44 | 41.54 |
11 | 10 | 0.36 | 10 | 19.68 | 0.4 | 40.25 |
12 | 10 | 0.36 | 15 | 13.3928 | 0.4 | 37.25 |
13 | 20 | 0.1 | 0 | 7.651 | 0.4 | 26.97 |
14 | 20 | 0.1 | 5 | 14.788 | 0.54 | 40.79 |
15 | 20 | 0.1 | 10 | 23.159 | 0.58 | 39.48 |
16 | 20 | 0.1 | 15 | 27.0731 | 0.59 | 30.02 |
17 | 20 | 0.25 | 0 | 5.8449 | 0.34 | 38.03 |
18 | 20 | 0.25 | 5 | 30.555 | 0.51 | 46.22 |
19 | 20 | 0.25 | 10 | 29.3781 | 0.56 | 58.04 |
20 | 20 | 0.25 | 15 | 26.1272 | 0.51 | 47.59 |
21 | 20 | 0.36 | 0 | 9.09 | 0.36 | 49.23 |
22 | 20 | 0.36 | 5 | 19.337 | 0.49 | 43.19 |
23 | 20 | 0.36 | 10 | 32.438 | 0.5 | 53.03 |
24 | 20 | 0.36 | 15 | 25.3018 | 0.43 | 48.74 |
25 | 30 | 0.1 | 0 | 8.693 | 0.42 | 42.87 |
26 | 30 | 0.1 | 5 | 23.333 | 0.5 | 39.8 |
27 | 30 | 0.1 | 10 | 32.3223 | 0.52 | 40.05 |
28 | 30 | 0.1 | 15 | 36.285 | 0.55 | 31.99 |
29 | 30 | 0.25 | 0 | 9.2219 | 0.4 | 58.63 |
30 | 30 | 0.25 | 5 | 40.812 | 0.49 | 56.77 |
31 | 30 | 0.25 | 10 | 33.765 | 0.54 | 51.95 |
32 | 30 | 0.25 | 15 | 39.0394 | 0.53 | 53.9 |
33 | 30 | 0.36 | 0 | 23.29 | 0.38 | 65 |
34 | 30 | 0.36 | 5 | 65.227 | 0.47 | 61.63 |
35 | 30 | 0.36 | 10 | 36.881 | 0.49 | 72.62 |
36 | 30 | 0.36 | 15 | 40.0741 | 0.49 | 73.60 |
Source | DF | Adj SS | Adj MS | F-Value | P-Value | PC [%] |
---|---|---|---|---|---|---|
wf | 3 | 0.176011 | 0.058670 | 38.80 | <0.001 | 52.43 |
F | 2 | 0.00155 | 0.000775 | 0.51 | 0.612 | 0.46 |
v | 2 | 0.071217 | 0.035608 | 23.55 | <0.001 | 21.21 |
wf * F | 6 | 0.016739 | 0.002790 | 1.85 | 0.173 | 4.99 |
wf * v | 6 | 0.020406 | 0.003401 | 2.25 | 0.109 | 6.08 |
F * v | 4 | 0.031633 | 0.007908 | 5.23 | 0.011 | 9.42 |
Error | 12 | 0.018144 | 0.001512 | 5.4 | ||
Total | 35 | 0.3357 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | P-Value | PC [%] |
---|---|---|---|---|---|---|
wf | 3 | 2825.3 | 941.76 | 7.52 | 0.004 | 41.29 |
F | 2 | 1057.3 | 528.67 | 4.22 | 0.041 | 27.94 |
v | 2 | 573.1 | 286.54 | 2.29 | 0.144 | 9.94 |
wf * F | 6 | 382 | 63.67 | 0.51 | 0.791 | 4.77 |
wf * v | 6 | 695 | 115.84 | 0.93 | 0.511 | 7.45 |
F * v | 4 | 343.5 | 85.89 | 0.69 | 0.615 | 2.55 |
Error | 12 | 1502.3 | 125.19 | 6.06 | ||
Total | 35 | 7378.7 | 100 |
Source | DF | Adj SS | Adj MS | F-Value | P-Value | PC [%] |
---|---|---|---|---|---|---|
wf | 3 | 116.7 | 38.90 | 1.75 | 0.210 | 2.19 |
F | 2 | 2258 | 1129.02 | 50.76 | <0.001 | 42.32 |
v | 2 | 1959.7 | 979.86 | 44.06 | <0.001 | 36.73 |
wf * F | 6 | 139.2 | 23.20 | 1.04 | 0.445 | 2.61 |
wf * v | 6 | 117.5 | 19.58 | 0.88 | 0.538 | 2.2 |
F * v | 4 | 477.8 | 119.45 | 5.37 | 0.010 | 8.95 |
Error | 12 | 266.9 | 22.24 | 5 | ||
Total | 35 | 5335.8 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birleanu, C.; Cioaza, M.; Udroiu, R.; Pustan, M.; Bere, P.; Lazarescu, L. Enhanced Tribological and Mechanical Properties of Copper-Modified Basalt-Reinforced Epoxy Composites. Polymers 2025, 17, 91. https://doi.org/10.3390/polym17010091
Birleanu C, Cioaza M, Udroiu R, Pustan M, Bere P, Lazarescu L. Enhanced Tribological and Mechanical Properties of Copper-Modified Basalt-Reinforced Epoxy Composites. Polymers. 2025; 17(1):91. https://doi.org/10.3390/polym17010091
Chicago/Turabian StyleBirleanu, Corina, Mircea Cioaza, Razvan Udroiu, Marius Pustan, Paul Bere, and Lucian Lazarescu. 2025. "Enhanced Tribological and Mechanical Properties of Copper-Modified Basalt-Reinforced Epoxy Composites" Polymers 17, no. 1: 91. https://doi.org/10.3390/polym17010091
APA StyleBirleanu, C., Cioaza, M., Udroiu, R., Pustan, M., Bere, P., & Lazarescu, L. (2025). Enhanced Tribological and Mechanical Properties of Copper-Modified Basalt-Reinforced Epoxy Composites. Polymers, 17(1), 91. https://doi.org/10.3390/polym17010091