Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate)
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PBF/CNC Composites
2.3. Characterizations
3. Results and Discussion
3.1. Nonisothermal Melt Crystallization Behavior Study
3.2. Isothermal Melt Crystallization Kinetics and Crystal Structure Study
Samples | Tc (°C) | n | k (min−n) | t0.5 (min) |
---|---|---|---|---|
PBF | 145.0 | 2.2 | 1.22 × 10−2 | 6.1 |
147.5 | 2.2 | 8.49 × 10−3 | 7.4 | |
150.0 | 2.1 | 3.94 × 10−3 | 12.2 | |
152.5 | 2.1 | 1.23 × 10−3 | 19.4 | |
155.0 | 2.6 | 6.67 × 10−5 | 33.0 | |
PBF/CNC0.5 | 145.0 | 2.3 | 4.72 × 10−2 | 3.2 |
147.5 | 2.6 | 8.16 × 10−3 | 5.5 | |
150.0 | 2.4 | 6.18 × 10−3 | 7.3 | |
152.5 | 2.5 | 1.52 × 10−3 | 12.0 | |
155.0 | 2.4 | 1.04 × 10−3 | 15.0 | |
PBF/CNC1 | 145.0 | 2.4 | 9.11 × 10−2 | 2.3 |
147.5 | 2.7 | 3.02 × 10−2 | 3.1 | |
150.0 | 2.4 | 1.93 × 10−2 | 4.4 | |
152.5 | 2.6 | 6.15 × 10−3 | 6.2 | |
155.0 | 2.3 | 5.59 × 10−3 | 8.1 |
3.3. Enhanced Mechanical Property and Hydrophilicity of PBF by CNC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fei, X.; Wang, J.; Zhu, J.; Wang, X.; Liu, X. Biobased Poly(Ethylene 2,5-Furancoate): No Longer an Alternative, But an Irreplaceable Polyester in the Polymer Industry. ACS Sustain. Chem. Eng. 2020, 8, 8471–8485. [Google Scholar] [CrossRef]
- Fei, X.; Wang, J.; Zhang, X.; Jia, Z.; Jiang, Y.; Liu, X. Recent Progress on Bio-based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers 2022, 14, 625. [Google Scholar] [CrossRef] [PubMed]
- Aranha, D.J.; Gogate, P.R. A Review on Green and Efficient Synthesis of 5-hydroxymethylfurfural (HMF) and 2,5-Furandicarboxylic Acid (FDCA) from Sustainable Biomass. Ind. Eng. Chem. Res. 2023, 62, 3053–3078. [Google Scholar] [CrossRef]
- Heo, J.B.; Lee, Y.-S.; Chung, C.-H. Marine Plant-based Biorefinery for Sustainable 2,5-furandicarboxylic Acid Production: A Review. Bioresour. Technol. 2023, 390, 129817. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; Jiang, B.; Gauvin, R.M.; Thomas, C.M. 2,5-Furandicarboxylic Acid: An Intriguing Precursor for Monomer and Polymer Synthesis. Molecules 2022, 27, 4071. [Google Scholar] [CrossRef]
- Hwang, D.K.; Chung, S.; Kim, S.; Park, J.; Ryu, J.; Park, J.; Oh, D.X.; Jeon, H.; Koo, J.M. Exploring the Potential of 2,5-Furandicarboxylic Acid-based Bioplastics: Properties, Synthesis, and Applications. Polym. Degrad. Stab. 2023, 218, 110539. [Google Scholar] [CrossRef]
- Papageorgiou, G.Z.; Papageorgiou, D.G.; Terzopoulou, Z.; Bikiaris, D.N. Production of Bio-based 2,5-Furan Dicarboxylate Polyesters: Recent Progress and Critical Aspects in Their Synthesis and Thermal Properties. Eur. Polym. J. 2016, 83, 202–229. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Qi, Z.; He, L.; Peng, L. Progress in the Synthesis and Properties of 2,5-Furan Dicarboxylate Based Polyesters. Bioresources 2020, 15, 4502–4527. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G. A series of Furan-aromatic Polyesters Synthesized via Direct Esterification Method Based on Renewable Resources. J. Polym. Sci. Polym. Chem. 2012, 50, 1026–1036. [Google Scholar] [CrossRef]
- Jiang, L.; Gonzalez-Diaz, A.; Ling-Chin, J.; Malik, A.; Roskilly, A.P.; Smallbone, A.J. PEF Plastic Synthesized from Industrial Carbon Dioxide and Biowaste. Nat. Sustain. 2020, 3, 761–767. [Google Scholar] [CrossRef]
- Ma, J.; Yu, X.; Xu, J.; Pang, Y. Synthesis and Crystallinity of Poly(butylene 2,5-furandicarboxylate). Polymer 2012, 53, 4145–4151. [Google Scholar] [CrossRef]
- Poulopoulou, N.; Nikolaidis, G.N.; Ioannidis, R.O.; Efstathiadou, V.L.; Terzopoulou, Z.; Papageorgiou, D.G.; Kapnisti, M.; Papageorgiou, G.Z. Aromatic but Sustainable: Poly(butylene 2,5-furandicarboxylate) as a Crystallizing Thermoplastic in the Bioeconomy. Ind. Eng. Chem. Res. 2022, 61, 13461–13473. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, J.; Xie, W.; Chen, P.-H.; Gazzano, M.; Scandola, M.; Gross, R.A. Poly(butylene 2,5-furan dicarboxylate), a Biobased Alternative to PBT: Synthesis, Physical Properties, and Crystal Structure. Macromolecules 2013, 46, 796–804. [Google Scholar] [CrossRef]
- Nolasco, M.M.; Rodrigues, L.C.; Araújo, C.F.; Coimbra, M.M.; Ribeiro-Claro, P.; Vaz, P.D.; Rudić, S.; Silvestre, A.J.D.; Bouyahya, C.; Majdoub, M.; et al. From PEF to PBF: What Difference Does the Longer Alkyl Chain Make a Computational Spectroscopy Study of Poly(butylene 2,5-furandicarboxylate). Front. Chem. 2022, 10, 1056286. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G.Z.; Tsanaktsis, V.; Papageorgiou, D.G.; Exarhopoulos, S.; Papageorgiou, M.; Bikiaris, D.N. Evaluation of Polyesters from Renewable Resources as Alternatives to the Current Fossil-Based Polymers. Phase Transitions of Poly(butylene 2,5-furan-dicarboxylate). Polymer 2014, 55, 3846–3858. [Google Scholar] [CrossRef]
- Poulopoulou, N.; Guigo, N.; Sbirrazzuoli, N.; Papageorgiou, D.G.; Bikiaris, D.N.; Nikolaidis, G.N.; Papageorgiou, G.Z. Towards Increased Sustainability for Aromatic Polyesters: Poly(butylene 2,5-furandicarboxylate) and its Blends with Poly (butylene terephthalate). Polymer 2021, 212, 123157. [Google Scholar] [CrossRef]
- Shao, Q.; Long, L.; Zhao, J.; Li, Y.; Wang, Z. Accelerated Nonisothermal Crystallization and Improved Material Properties of Biobased Poly(butylene 2,5-furandicarboxylate)/Talc composites. Thermochim. Acta 2023, 730, 179618. [Google Scholar] [CrossRef]
- Zhou, G.; Li, L.; Jiang, M.; Wang, G.; Wang, R.; Wu, G.; Zhou, G. Renewable Poly(butene 2, 5-furan dicarboxylate) Nanocomposites Constructed by TiO2 Nanocubes: Synthesis, Crystallization, and Properties. Polym. Degrad. Stab. 2021, 189, 109591. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Terzopoulou, Z.; Vlachopoulos, A.; Klonos, P.A.; Kyritsis, A.; Tzetzis, D.; Papageorgiou, G.Z.; Bikiaris, D.N. Synthesis and Characterization of Novel Polymer/Clay Nanocomposites Based on Poly (butylene 2,5-furan dicarboxylate). Appl. Clay Sci. 2020, 190, 105588. [Google Scholar] [CrossRef]
- Klonos, P.A.; Papadopoulos, L.; Terzopoulou, Z.; Papageorgiou, G.Z.; Kyritsis, A.; Bikiaris, D.N. Molecular Dynamics in Nanocomposites Based on Renewable Poly(butylene 2,5-furan-dicarboxylate) in Situ Reinforced by Montmorillonite Nanoclays: Effects of Clay Modification, Crystallization, and Hydration. J. Phys. Chem. B 2020, 124, 7306–7317. [Google Scholar] [CrossRef]
- Mahmud, S.; Long, Y.; Taher, M.A.; Hu, H.; Zhang, R.; Zhu, J. Fully Bio-Based Micro-Cellulose Incorporated Poly(butylene 2,5-furandicarboxylate) Transparent Composites: Preparation and Characterization. Fibers. Polym. 2020, 21, 1550–1559. [Google Scholar] [CrossRef]
- Cho, B.-S.; Kim, M.-J.; Jung, S.-K.; Kang, S.C. Thermal Decomposition Kinetics and Characterization of Poly(butylene 2,5-furandicarboxylate)/Cloisite 30B Composites. Korean J. Chem. Eng. 2016, 33, 3267–3272. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef] [PubMed]
- Gomri, C.; Cretin, M.; Semsarilar, M. Recent Progress on Chemical Modification of Cellulose Nanocrystal (CNC) and its Application in Nanocomposite Films and Membranes-A Comprehensive Review. Carbohyd. Polym. 2022, 294, 119790. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, G.; Lin, N. Dispersibility Characterization of Cellulose Nanocrystals in Polymeric-based Composites. Biomacromolecules 2022, 23, 4439–4468. [Google Scholar] [CrossRef]
- Li, J.; Wu, D. Nucleation Roles of Cellulose Nanocrystals and Chitin Nanocrystals in Poly(ε-caprolactone) Nanocomposites. Int. J. Biol. Macromol. 2022, 205, 587–594. [Google Scholar] [CrossRef]
- Chai, H.; Chang, Y.; Zhang, Y.; Chen, Z.; Zhong, Y.; Zhang, L.; Sui, X.; Xu, H.; Mao, Z. The Fabrication of Polylactide/Cellulose Nanocomposites with Enhanced Crystallization and Mechanical Properties. Int. J. Biol. Macromol. 2020, 155, 1578–1588. [Google Scholar] [CrossRef]
- Li, Y.; Han, C.; Yu, Y.; Xiao, L. Effect of Loadings of Nanocellulose on the Significantly Improved Crystallization and Mechanical Properties of Biodegradable Poly(ε-caprolactone). Int. J. Biol. Macromol. 2020, 147, 34–45. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Song, K.; Lei, T.; Wu, Y. Poly(vinylidene fluoride)/Cellulose Nanocrystals Composites: Rheological, Hydrophilicity, Thermal and Mechanical Properties. Cellulose 2015, 22, 2431–2441. [Google Scholar] [CrossRef]
- Pan, S.; Jiang, Z.; Qiu, Z. Influence of Low Contents of Cellulose Nanocrystals on the Crystallization Behavior of Biobased Poly(propylene 2,5-furandicarboxylate). Giant 2024, 17, 100212. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z. Effect of Low Loadings of Cellulose Nanocrystals on the Significantly Enhanced Crystallization of Biodegradable Poly(butylene succinate-co-butylene adipate). Carbohyd. Polym. 2019, 205, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Jiang, Z.; Qiu, Z. Crystallization and Mechanical Property of Fully Biobased Poly(hexamethylene 2,5-furandicarboxylate)/Cellulose Nanocrystals Composites. Polymer 2023, 267, 125689. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z. Nonisothermal Melt Crystallization Study of Poly(ethylene succinate)/Cellulose Nanocrystals Composites. J. Polym. Environ. 2022, 30, 1518–1527. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z. Influence of Two Different Nanofillers on The Crystallization Behavior and Dynamic Mechanical Properties of Biodegradable Poly(ethylene adipate). J. Polym. Environ. 2019, 27, 2674–2681. [Google Scholar] [CrossRef]
- Pan, S.; Qiu, Z. Fully Biodegradable Poly(hexamethylene succinate)/Cellulose Nanocrystals Composites with Enhanced Crystallization Rate and Mechanical Property. Polymers 2021, 13, 3667. [Google Scholar] [CrossRef]
- Pan, S.; Jiang, Z.; Qiu, Z. Significantly Enhanced Crystallization of Poly(ethylene succinate-co-1,2-propylene succinate) by Cellulose Nanocrystals as an Efficient Nucleating Agent. Polymers 2022, 14, 224. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Qiu, Z. Isothermal Melt Crystallization Kinetics Study of Cellulose Nanocrystals Nucleated Biodegradable Poly(ethylene succinate). Polymer 2021, 227, 123869. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Qiu, Z. Thermal and Rheological Properties of Fully Biodegradable Poly(ethylene succinate)/Cellulose Nanocrystals Composites. Compos. Commun. 2021, 23, 100571. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Z. Fully Biodegradable Poly(butylene succinate-co-1,2-decylene succinate)/Cellulose Nanocrystals Composites with Significantly Enhanced Crystallization and Mechanical Property. Polymer 2022, 252, 124946. [Google Scholar] [CrossRef]
- Bi, T.; Qiu, Z. Synthesis, Thermal and Mechanical Properties of Fully Biobased Poly(butylene-co-propylene 2,5-furandicarboxylate) Copolyesters with Low Contents of Propylene 2,5-Furandicarboxylate Units. Polymer 2020, 186, 122053. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of Non-isothermal Crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Vyazovkin, S. Nonisothermal Crystallization of Polymers: Getting More out of Kinetic Analysis of Differential Scanning Calorimetry Data. Polym. Crystal. 2018, 1, e10003. [Google Scholar] [CrossRef]
- Dobreva, A.; Gutzow, I. Activity of Substrates in the Catalyzed Nucleation of Glass-forming Melts. I. Theory. J. Non-Cryst. Solids 1993, 162, 1–12. [Google Scholar] [CrossRef]
- Dobreva, A.; Gutzow, I. Activity of Substrates in the Catalyzed Nucleation of Glass-forming Melts. II. Experimental Evidence. J. Non-Cryst. Solids 1993, 162, 13–25. [Google Scholar] [CrossRef]
- Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, J.C. Self-nucleation and Enhanced Nucleation of Polymers. Definition of a Convenient Calorimetric “Efficiency Scale” and Evaluation of Nucleating Additives in Isotactic Polypropylene (α Phase). J. Polym. Sci. Polym. Phys. 1993, 31, 1395–1405. [Google Scholar] [CrossRef]
- Fillon, B.; Thierry, A.; Lotz, B.; Wittmann, J.C. Efficiency Scale for Polymer Nucleating Agents. J. Therm. Anal. Calorim. 1994, 42, 721–731. [Google Scholar] [CrossRef]
- Sangroniz, L.; Cavallo, D.; Müller, A.J. Self-nucleation Effects on Polymer Crystallization. Macromolecules 2020, 53, 4581–4604. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Yao, W.; Pan, S.; Qiu, Z. Crystallization Behavior and Mechanical Property of Biodegradable Poly(butylene succinate-co-2-methyl succinate)/Cellulose Nanocrystals Composites. Polymers 2024, 16, 1735. [Google Scholar] [CrossRef]
Samples | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
PBF | 107.2 ± 5.9 | 35.4 ± 2.9 | 545.0 ± 5.9 |
PBF/CNC0.5 | 131.4 ± 7.3 | 40.8 ± 2.1 | 494.5 ± 3.5 |
PBF/CNC1 | 186.5 ± 8.6 | 50.7 ± 3.0 | 467.1 ± 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Yang, H.; Qiu, Z. Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate). Polymers 2025, 17, 196. https://doi.org/10.3390/polym17020196
Pan S, Yang H, Qiu Z. Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate). Polymers. 2025; 17(2):196. https://doi.org/10.3390/polym17020196
Chicago/Turabian StylePan, Siyu, Haidong Yang, and Zhaobin Qiu. 2025. "Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate)" Polymers 17, no. 2: 196. https://doi.org/10.3390/polym17020196
APA StylePan, S., Yang, H., & Qiu, Z. (2025). Influence of Low Loadings of Cellulose Nanocrystals on the Simultaneously Enhanced Crystallization Rate, Mechanical Property, and Hydrophilicity of Biobased Poly(butylene 2,5-furandicarboxylate). Polymers, 17(2), 196. https://doi.org/10.3390/polym17020196