Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier
Abstract
:1. Introduction
2. Experimental Materials and Procedures
2.1. Experimental Chemicals
2.2. Experimental Apparatus
2.3. Synthesis of Sand Particles/Pb(II)-Imprinted Composite Material
2.3.1. Sand Particles’ Pretreatment
2.3.2. Preparation of Pb(II)-AA-AN Complex
2.3.3. Preparation of MS/Pb(II)-IIP and MS/Pb(II)-NIP
2.4. Adsorption Investigations
2.4.1. Static Adsorption Investigations
2.4.2. Selectivity Adsorption
2.4.3. Reuse Experiment
3. Results and Discussion
3.1. Characterization Investigations
3.1.1. Contact Angle Measurement
3.1.2. UV–Vis Adsorption Spectra
3.1.3. FTIR Analysis
3.1.4. SEM Analysis
3.1.5. N2 Adsorption–Desorption Analysis
3.2. Static Adsorption Studies
3.2.1. Influence of Multiple Aspects Regarding the Adsorption Process
3.2.2. Adsorption Isotherm
3.2.3. Adsorption Kinetic
3.3. Adsorption Selectivity
3.4. Reuse Experiment of MS/Pb(II)-IIP
3.5. Analysis of Imprinting Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Luo, S.; Song, X.; Wang, J.; Huang, X. Field specific capture of Pb(II) in aqueous samples with three channels in-tip microextraction apparatus based on ion-imprinted polymer. Talanta 2023, 262, 124676. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Vesali-Naseh, M.; Vesali Naseh, M.R.; Ameri, P. Adsorption of Pb(II) ions from aqueous solutions using carbon nanotubes: A systematic review. J. Clean. Prod. 2021, 291, 125917. [Google Scholar] [CrossRef]
- Coelho, L.M.; Pessoa, D.R.; Oliveira, K.M.; de Sousa, P.A.R.; da Silva, L.A.; Coelho, N.M.M. Potential Exposure and Risk Associated with Metal Contamination in Foods. In Significance, Prevention and Control of Food Related Diseases; IntechOpen: London, UK, 2016. [Google Scholar]
- Wu, P.; He, Y.; Lu, S.; Wang, S.; Yi, J.; He, Y.; Zhang, J.; Xiang, S.; Ding, P.; Kai, T.; et al. A regenerable ion-imprinted magnetic biocomposite for selective adsorption and detection of Pb2+ in aqueous solution. J. Hazard. Mater. 2021, 408, 124410. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Gatabi, J.; Sarrafi, Y.; Lakouraj, M.M.; Taghavi, M. Facile and efficient removal of Pb(II) from aqueous solution by chitosan-lead ion imprinted polymer network. Chemosphere 2020, 240, 124772. [Google Scholar] [CrossRef]
- Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Sci. Rep. 2024, 14, 7595. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.B.; Saini, R.; Srivastava, N.; Ahmad, I.; Alshahrani, M.Y.; Gupta, V.K. Waste biomass based potential bioadsorbent for lead removal from simulated wastewater. Bioresour. Technol. 2022, 349, 126843. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, R.-Y.; Yao, L.; Wang, Y.; Yue, Q.; Yu, L.; Yu, J.-X.; Yin, W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. J. Hazard. Mater. 2022, 436, 129249. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; He, C.; He, Q.; Mou, H.; Chen, W.; Ao, T. Adsorption behavior and mechanism of lead by starch/tobermorite composite hydrogel. Int. J. Biol. Macromol. 2024, 283, 137647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, S.; Yang, F.; Pan, J. Controlled surface multifunctional groups over halloysite nanotube enabling reinforced lead adsorption in vitro. Sep. Purif. Technol. 2024, 339, 126632. [Google Scholar] [CrossRef]
- Tian, S.; Shu, X.; Jiang, X.; Zhang, H.; Ma, X.; Teng, Z.; Li, T. Mineralization and stabilization of toxic Pb2+ ions using CMC loaded S/P co-doped biochar composite. Sep. Purif. Technol. 2025, 354, 129161. [Google Scholar] [CrossRef]
- Rong, Y.; Yan, W.; Wang, Z.; Hao, X.; Guan, G. Rapid and selective removal of Pb ions by electroactive titanium Dioxide/Polyaniline ion exchange film. Sep. Purif. Technol. 2023, 312, 123386. [Google Scholar] [CrossRef]
- Stathatou, P.M.; Athanasiou, C.E.; Tsezos, M.; Goss, J.W.; Blackburn, L.C.; Tourlomousis, F.; Mershin, A.; Sheldon, B.W.; Padture, N.P.; Darling, E.M.; et al. Lead removal at trace concentrations from water by inactive yeast cells. Commun. Earth Environ. 2022, 3, 132. [Google Scholar] [CrossRef]
- El-Aziz, M.E.A.; Youssef, A.M.; Kamal, K.H.; Kelnar, I.; Kamel, S. Preparation and performance of bionanocomposites based on grafted chitosan, GO and TiO2-NPs for removal of lead ions and basic-red 46. Carbohydr. Polym. 2023, 305, 120571. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lim, D.-S.; Lee, H.-J.; Kim, I.-C.; Kwon, Y.-N.; Myung, S. Hollow-fiber mixed-matrix membrane impregnated with glutaraldehyde-crosslinked polyethyleneimine for the removal of lead from aqueous solutions. J. Membr. Sci. 2022, 663, 121031. [Google Scholar] [CrossRef]
- Feng, X.; Long, R.; Wang, L.; Liu, C.; Bai, Z.; Liu, X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol. 2022, 284, 120099. [Google Scholar] [CrossRef]
- Rouhani, F.; Morsali, A. Fast and Selective Heavy Metal Removal by a Novel Metal-Organic Framework Designed with In-Situ Ligand Building Block Fabrication Bearing Free Nitrogen. Chem. A Eur. J. 2018, 24, 5529–5537. [Google Scholar] [CrossRef] [PubMed]
- Sarioz, N.; Isik, B.; Cakar, F.; Cankurtaran, O. Valorization of the performance of novel and natural sodium alginate/pectin/Portulaca oleracea L. ternary composites in the adsorption of toxic methylene blue dye from the aquatic environment. Int. J. Biol. Macromol. 2024, 282, 136867. [Google Scholar]
- Kulal, P.; Badalamoole, V. Modified gum ghatti based hybrid hydrogel nanocomposite as adsorbent material for dye removal from wastewater. Int. J. Biol. Macromol. 2024, 283, 137409. [Google Scholar] [CrossRef] [PubMed]
- Souhila, M.; Zoubida, C.-D.; Abdallah, B.; Abderraouf, G.; Derradji, C.; Antonio, G. Removal of Pb(II) from aqueous solutions by new layered double hydroxides adsorbent MgCuCaAl-LDH: Free Gibbs energy, entropy and internal energy studies. Inorg. Chem. Commun. 2022, 144, 109910. [Google Scholar]
- Osboo, R.K.; Hasantabar, V.; Maham, M. Effective magnetic nanoadsorbent based on natural carboxymethyl cellulose/polyaniline nanotube/graphene oxide for aflatoxin B1 and B2 adsorption in rice utilizing a novel synthesis method. Int. J. Biol. Macromol. 2024, 282, 137162. [Google Scholar]
- Kumkum, P.; Kumar, S. A Review on Biochar as an Adsorbent for Pb(II) Removal from Water. Biomass 2024, 4, 243–272. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Giove, A.; Laatikainen, M.; Branger, C.; Laatikainen, K. Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade. J. Environ. Chem. Eng. 2021, 9, 106548. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, B.; Wang, R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep. Purif. Technol. 2022, 298, 121469. [Google Scholar] [CrossRef]
- Xu, W.; Wang, B.; Sun, Y.; Ou, X.; Sun, Y.; Zhang, P.; Chen, Z. Fabrication of ultrasound/microwave co-assisted ruthenium temperature-sensitive ion-imprinted polymer microspheres and evaluation of its selective adsorption performances. Sep. Purif. Technol. 2025, 355, 129652. [Google Scholar] [CrossRef]
- Fu, K.; Sun, H.; Chen, X.; Liu, L.; Cao, Y.; Zhao, J.; Li, S.; Ma, W. Computer-aided design and preparation of surface arsenite molecularly imprinted polymers for selective adsorption and highly sensitive detection of As(III). J. Hazard. Mater. 2024, 480, 136386. [Google Scholar] [CrossRef]
- Shamsabadi, E.; Akhlaghi, H.; Baghayeri, M.; Motavalizadehkakhky, A. Preparation and application of a new ion-imprinted polymer for nanomolar detection of mercury(II) in environmental waters. Sci. Rep. 2024, 14, 25052. [Google Scholar] [CrossRef]
- René, W.; Lenoble, V.; Chioukh, M.; Branger, C. A turn-on fluorescent ion-imprinted polymer for selective and reliable optosensing of lead in real water samples. Sens. Actuators B Chem. 2020, 319, 128252. [Google Scholar] [CrossRef]
- Zuo, B.; Zuo, J.; Chen, H.; Deng, Q.; Yamauchi, Y.; Kim, J.; Xu, X. Ion-imprinted magnetic adsorbents for the selective capture of Cu(II) and their cascade application as heterogeneous recyclable catalysts for Ullmann and Glaser coupling reactions. Chem. Eng. J. 2023, 471, 143893. [Google Scholar] [CrossRef]
- Taleb, M.A.; Kumar, R.; Barakat, M.A.; Almeelbi, T.; Seliem, M.K.; Ahmad, A. Recent advances in heavy metals uptake by tailored silica-based adsorbents. Sci. Total Environ. 2024, 955, 177093. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, T.; Xu, H.; Wang, Y.; Wang, B. Comparative study of silica-based porous materials in the purification of radioactive wastewater. Sep. Purif. Technol. 2025, 357, 130234. [Google Scholar] [CrossRef]
- Marinela, L.M.; ClaudiuAugustin, G.; Stela, D.E.; Doina, H.; Valentina, D.M. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023, 28, 2798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, X.; Liang, C.; Qin, L.; Fu, D.; Wang, M.; Bai, Y.; Liu, W.; Liu, X. Preparation of graphene-based surface ion-imprinted adsorbent for Ga(III) selective extraction from acid leaching of fly ash. Sep. Purif. Technol. 2023, 325, 124681. [Google Scholar] [CrossRef]
- Shamsipur, M.; Samandari, L.; Besharati-Seidani, A.; Pashabadi, A. Synthesis, characterization and using a new terpyridine moiety-based ion-imprinted polymer nanoparticle: Sub-nanomolar detection of Pb(II) in biological and water samples. Chem. Pap. 2018, 72, 2707–2717. [Google Scholar] [CrossRef]
- Lo, S.-F.; Wang, S.-Y.; Tsai, M.-J.; Lin, L.-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem. Eng. Res. Des. 2012, 90, 1397–1406. [Google Scholar] [CrossRef]
- He, H.; Ye, S.; Zhang, W.; Li, S.; Nie, Z.; Xu, X.; Li, W.; Abdukayum, A.; Chen, W.-T.; Hu, G. Synthesis of magnetic mesoporous silica adsorbents by thiol-ene click chemistry with optimised lewis base properties through molecular imprinting for the rapid and effective capture of Pb(II). Chem. Eng. J. 2024, 489, 151294. [Google Scholar] [CrossRef]
- Murat, A.; Gao, S.; Wang, L.; Chai, L.; Abliz, S.; Yimit, A. Synthesis and Characterization of Cadmium Ion-Imprinted/Natural Sand Composite and Research on Its Adsorption Properties. Coatings 2023, 13, 1288. [Google Scholar] [CrossRef]
- Shi, J.; Liu, W.; Yang, S.; Wu, Z.; Han, B.; Li, D.; Xu, X. Adsorption Thermodynamic and Kinetic Mechanism of Substrate-Induced Molecular Geometry Orientation. Langmuir 2022, 38, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jiang, J.; Wu, Y.; Fu, Y.; Sun, Y.; Chen, F.; Yan, G.; Hu, J. High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine. J. Mol. Liq. 2021, 337, 116418. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Wang, X.; Wang, C.; Wei, X. Effect of pH on Adsorption of Tetracycline Antibiotics on Graphene Oxide. Int. J. Environ. Res. Public Health 2023, 20, 2448. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Xiong, Z.; Shujia, K.; Jingai, S.; Haiping, Y.; Shihong, Z.; Hanping, C. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar]
- Tian, H.; Cui, J.; Cui, B.; Liu, C.; Fang, J.; Du, X. Synthesis and enhanced adsorption for F− by three novel high entropy LDHs using TEA-assisted hydrothermal technology. J. Water Process Eng. 2024, 67, 106252. [Google Scholar] [CrossRef]
- Wang, R.; Hu, Q.-H.; Wang, Q.-Y.; Xiang, Y.-L.; Huang, S.-H.; Liu, Y.-Z.; Li, S.-Y.; Chen, Q.-L.; Zhou, Q.-H. Efficiently selective removal of Pb(II) by magnetic ion-imprinted membrane based on polyacrylonitrile electro-spun nanofibers. Sep. Purif. Technol. 2022, 284, 120280. [Google Scholar] [CrossRef]
- Yang, J.; Tang, B.; Zhao, P.; Man, I.; Yi, L. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4628–4636. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Sun, X.; Shang, H.; Di, Y.; Zhao, Z. Preparation and properties of thermo-sensitive surface Pb(II) ion-imprinted polymers. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 138–146. [Google Scholar] [CrossRef]
- Peng, X.; Xu, F.; Zhang, W.; Wang, J.; Zeng, C.; Niu, M.; Chmielewská, E. Magnetic Fe3O4 @ silica–xanthan gum composites for aqueous removal and recovery of Pb2+. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 27–36. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, S.; Lu, Q. Enhanced photocatalytic performance of silver–based solid solution heterojunctions prepared by hydrothermal method. Mater. Sci. Semicond. Process. 2018, 85, 52–58. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
MS/Pb(II)-IIP | 25.63 | 0.121 | 19.160 |
MS/Pb(II)-NIP | 23.48 | 0.104 | 17.180 |
Sand particles | 0.760 | 0.0386 | 9.800 |
Modify Sand particles | 1.577 | 0.0979 | 10.711 |
∆G0 (kJ·mol−1) | ∆S0 (J·mol−1·k−1) | ∆H0 (kJ·mol−1) | |||
---|---|---|---|---|---|
298 K | 303 K | 308 K | 313 K | ||
−4.083 | −3.941 | −4.151 | −4.483 | 7.000 | −1.994 |
Adsorbent | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
KL | Qm (mg·g−1) | R2 | KF | 1/n | R2 | |
XS/Pb-IIP | 1.04 × 10−3 | 150.34 | 0.95 | 0.282 | 0.847 | 0.94 |
XS/Pb-NIP | 2.18 × 10−3 | 41.79 | 0.92 | 0.263 | 0.724 | 0.88 |
T (K) | Quasi-First-Order | Quasi-Second-Order | ||||
---|---|---|---|---|---|---|
Qe, cal mg·g−1 | k1 min−1 | R2 | Qe, cal mg·g−1 | k2 min−1 | R2 | |
298 K | 25.53 | 0.060 | 0.90 | 26.02 | 0.033 | 0.93 |
303 K | 27.95 | 0.053 | 0.94 | 28.82 | 0.022 | 0.97 |
308 K | 29.32 | 0.055 | 0.98 | 30.25 | 0.022 | 0.96 |
313 K | 30.65 | 0.058 | 0.97 | 31.62 | 0.023 | 0.98 |
kd (Pb2+) | kd (M2+) | k | |
---|---|---|---|
Pb(II)/Cu(II) | 0.533 | 0.058 | 9.19 |
Pb(II)/Zn(II) | 0.462 | 0.089 | 5.19 |
Pb(II)/Ni(II) | 0.479 | 0.095 | 5.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, Y.; Gao, S.; Qi, J.; Abliz, S.; Chai, L. Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier. Polymers 2025, 17, 229. https://doi.org/10.3390/polym17020229
Sui Y, Gao S, Qi J, Abliz S, Chai L. Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier. Polymers. 2025; 17(2):229. https://doi.org/10.3390/polym17020229
Chicago/Turabian StyleSui, Yixin, Shuaibing Gao, Jiaxiang Qi, Shawket Abliz, and Linlin Chai. 2025. "Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier" Polymers 17, no. 2: 229. https://doi.org/10.3390/polym17020229
APA StyleSui, Y., Gao, S., Qi, J., Abliz, S., & Chai, L. (2025). Preparation and Performance Research of Pb(II)-Imprinted Acrylonitrile-Co-Acrylic Acid Composite Material with Modified Sand Particles as Carrier. Polymers, 17(2), 229. https://doi.org/10.3390/polym17020229