Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Activation and Chemical Modification of the Polymer Foils
2.3. Characterization Methods
3. Results and Discussion
3.1. Surface Wettability Measurements
3.2. Surface Charge Determination
3.3. Elemental Surface Composition Analysis
3.4. Morphology of the Samples
3.5. Algae Growth Resistance
3.6. Antibacterial Efficacy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bačáková, L.; Švorčík, V. Cell Colonization Control by Physical and Chemical Modification of Materials; Nova Science Publishers: Hauppauge, NY, USA, 2009; ISBN 978-1-60456-887-5. [Google Scholar]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma Treatment of Polymers for Surface and Adhesion Improvement. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Kotál, V.; Švorčík, V.; Slepička, P.; Sajdl, P.; Bláhová, O.; Šutta, P.; Hnatowicz, V. Gold Coating of Poly(Ethylene Terephthalate) Modified by Argon Plasma. Plasma Process. Polym. 2007, 4, 69–76. [Google Scholar] [CrossRef]
- Švorčík, V.; Kotál, V.; Slepička, P.; Bláhová, O.; Špírková, M.; Sajdl, P.; Hnatowicz, V. Modification of Surface Properties of Polyethylene by Ar Plasma Discharge. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 244, 365–372. [Google Scholar] [CrossRef]
- Kolská, Z.; Řezníčková, A.; Nagyová, M.; Slepičková Kasálková, N.; Sajdl, P.; Slepička, P.; Švorčík, V. Plasma Activated Polymers Grafted with Cysteamine Improving Surfaces Cytocompatibility. Polym. Degrad. Stab. 2014, 101, 1–9. [Google Scholar] [CrossRef]
- Guruvenket, S.; Rao, G.M.; Komath, M.; Raichur, A.M. Plasma Surface Modification of Polystyrene and Polyethylene. Appl. Surf. Sci. 2004, 236, 278–284. [Google Scholar] [CrossRef]
- Kraus, E.; Orf, L.; Baudrit, B.; Heidemeyer, P.; Bastian, M.; Bonenberger, R.; Starostina, I.; Stoyanov, O. Analysis of the Low-Pressure Plasma Pretreated Polymer Surface in Terms of Acid–Base Approach. Appl. Surf. Sci. 2016, 371, 365–375. [Google Scholar] [CrossRef]
- Sarra-Bournet, C.; Turgeon, S.; Mantovani, D.; Laroche, G. Comparison of Atmospheric-Pressure Plasma versus Low-Pressure RF Plasma for Surface Functionalization of PTFE for Biomedical Applications. Plasma Process. Polym. 2006, 3, 506–515. [Google Scholar] [CrossRef]
- Chan, C.-M.; Ko, T.-M.; Hiraoka, H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Slepička, P.; Trostová, S.; Slepičková Kasálková, N.; Kolská, Z.; Sajdl, P.; Švorčík, V. Surface Modification of Biopolymers by Argon Plasma and Thermal Treatment: Surface Modification of Biopolymers. Plasma Process. Polym. 2012, 9, 197–206. [Google Scholar] [CrossRef]
- Goddard, J.M.; Hotchkiss, J.H. Polymer Surface Modification for the Attachment of Bioactive Compounds. Prog. Polym. Sci. 2007, 32, 698–725. [Google Scholar] [CrossRef]
- El Yousfi, R.; Achalhi, N.; El Ouardi, Y.; Lamsayah, M.; El Barkany, S.; Laatikainen, K.; El Idrissi, A. Enhanced Performance of Novel Hydroxyethyl Cellulose Grafted Amide-Based Microcapsules by Catalyzed Interfacial Polymerization: Synthesis, Characterization, and Theoretical Studies. React. Funct. Polym. 2023, 185, 105533. [Google Scholar] [CrossRef]
- Neuhaus, S.; Padeste, C.; Spencer, N.D. Versatile Wettability Gradients Prepared by Chemical Modification of Polymer Brushes on Polymer Foils. Langmuir 2011, 27, 6855–6861. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, L.; Mehl, A.; Sereno, N.; Hämmerle, C.H.F. The Improvement of Adhesive Properties of PEEK through Different Pre-Treatments. Appl. Surf. Sci. 2012, 258, 7213–7218. [Google Scholar] [CrossRef]
- Neubertová, V.; Slepičková Kasálková, N.; Vokatá, B.; Bačáková, L.; Švorčík, V.; Kolská, Z. Influence of UV Irradiation and Subsequent Chemical Grafting on the Surface Properties of Cellulose. Cellulose 2022, 29, 1405–1418. [Google Scholar] [CrossRef]
- Shin, J.; Liu, X.; Chikthimmah, N.; Lee, Y.S. Polymer Surface Modification Using UV Treatment for Attachment of Natamycin and the Potential Applications for Conventional Food Cling Wrap (LDPE). Appl. Surf. Sci. 2016, 386, 276–284. [Google Scholar] [CrossRef]
- Razavizadeh, M.; Jamshidi, M. Adhesion of Nitrile Rubber to UV-Assisted Surface Chemical Modified PET Fabric, Part II: Interfacial Characterization of MDI Grafted PET. Appl. Surf. Sci. 2016, 379, 114–123. [Google Scholar] [CrossRef]
- Kolska, Z.; Benkocka, M.; Knapova, T.; Slepickova Kasalkova, N.; Kolarova, K.; Slepicka, P.; Svorcik, V. Surface Treatment of Materials for Variable Applications and Surface Properties and Characterization. Manuf. Technol. 2016, 16, 949–955. [Google Scholar] [CrossRef]
- Kordoghli, B.; Khiari, R.; Mhenni, M.F.; Sakli, F.; Belgacem, M.N. Sulfonation of Polyester Fabrics by Gaseous Sulfur Oxide Activated by UV Irradiation. Appl. Surf. Sci. 2012, 258, 9737–9741. [Google Scholar] [CrossRef]
- Kordoghli, B.; Khiari, R.; Dhaouadi, H.; Belgacem, M.N.; Mhenni, M.F.; Sakli, F. UV Irradiation-Assisted Grafting of Poly(Ethylene Terephthalate) Fabrics. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 606–613. [Google Scholar] [CrossRef]
- Tiznado-Orozco, G.E.; Reyes-Gasga, J.; Elefterie, F.; Beyens, C.; Maschke, U.; Brès, E.F. Wettability Modification of Human Tooth Surface by Water and UV and Electron-Beam Radiation. Mater. Sci. Eng. C 2015, 57, 133–146. [Google Scholar] [CrossRef]
- Neubertová, V.; Vokatá, B.; Švorčík, V.; Kolská, Z. Photodegradation and Chemical Grafting of PEEK and PET Foils for Antibacterial Activity. Mater. Lett. 2023, 343, 134369. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Mozetič, M.; Recek, N. Advanced Method for Efficient Functionalization of Polymers by Intermediate Free-Radical Formation with Vacuum-Ultraviolet Radiation and Producing Superhydrophilic Surfaces. J. Photochem. Photobiol. A Chem. 2023, 443, 114876. [Google Scholar] [CrossRef]
- Vatanpour, V.; Esmaeili, M.; Safarpour, M.; Ghadimi, A.; Adabi, J. Synergistic Effect of Carboxylated-MWCNTs on the Performance of Acrylic Acid UV-Grafted Polyamide Nanofiltration Membranes. React. Funct. Polym. 2019, 134, 74–84. [Google Scholar] [CrossRef]
- Irshadeen, I.M.; Walden, S.L.; Wegener, M.; Truong, V.X.; Frisch, H.; Blinco, J.P.; Barner-Kowollik, C. Action Plots in Action: In-Depth Insights into Photochemical Reactivity. J. Am. Chem. Soc. 2021, 143, 21113–21126. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.B.; Ahmed, H.M.; Hussein, A.M.; Fathulla, A.B.; Wsw, R.M.; Hussein, R.T. Tuning the Absorption of Ultraviolet Spectra and Optical Parameters of Aluminum Doped PVA Based Solid Polymer Composites. J. Mater. Sci. Mater. Electron. 2015, 26, 8022–8028. [Google Scholar] [CrossRef]
- Ul Ahad, I.; Bartnik, A.; Fiedorowicz, H.; Kostecki, J.; Korczyc, B.; Ciach, T.; Brabazon, D. Surface Modification of Polymers for Biocompatibility via Exposure to Extreme Ultraviolet Radiation: Surface Modification of Polymers for Biocompatibility. J. Biomed. Mater. Res. 2014, 102, 3298–3310. [Google Scholar] [CrossRef]
- Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and New Applications of UV-Induced Surface Graft Polymerizations. Prog. Polym. Sci. 2009, 34, 156–193. [Google Scholar] [CrossRef]
- Hamelmann, N.M.; Paulusse, J.M.J. Single-Chain Polymer Nanoparticles in Biomedical Applications. J. Control. Release 2023, 356, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Li, J.; Li, L.; Hu, W. Surface-Grafting Polymers: From Chemistry to Organic Electronics. Mater. Chem. Front. 2020, 4, 692–714. [Google Scholar] [CrossRef]
- Dorčák, V.; Kroutil, O.; Kabeláč, M.; Janata, J.; Vacek, J. Cysteamine Chemisorption at Mercury–Solution Interfaces in the Context of Redox and Microdissociation Equilibria. Langmuir 2024, 40, 6253–6260. [Google Scholar] [CrossRef] [PubMed]
- Alonzi, T.; Aiello, A.; Sali, M.; Delogu, G.; Villella, V.R.; Raia, V.; Nicastri, E.; Piacentini, M.; Goletti, D. Multiple antimicrobial and immune-modulating activities of cysteamine in infectious diseases. Biomed. Pharmacother. 2024, 178, 117153. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Shrivastava, S.; Kabeer Kurukkan, A.; Sagarika, P.; Pramanik, S.; Sahi, C.; Mukherjee, S. Cysteamine Capped Silver Nanoclusters: A Potential Antimicrobial Agent for Antibiotic-Resistant Bacteria. J. Photochem. Photobiol. A Chem. 2023, 436, 114403. [Google Scholar] [CrossRef]
- Zheng, Y.; Miao, J.; Zhang, F.; Cai, C.; Koh, A.; Simmons, T.J.; Mousa, S.A.; Linhardt, R.J. Surface Modification of a Polyethylene Film for Anticoagulant and Antimicrobial Catheter. React. Funct. Polym. 2016, 100, 142–150. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Hou, M.; Shan, S.; Li, R.; Yu, N.; Lin, Y.; Zhang, A. Synthesis and Anti-Bacterial/Fungal Activities of Amphiphilic Polysiloxanes Primary Ammonium Salts. React. Funct. Polym. 2023, 183, 105495. [Google Scholar] [CrossRef]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial Polymers in the Nano-World. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, L.; Kleshcheva, N. Antimicrobial Polymers: Mechanism of Action, Factors of Activity, and Applications. Appl. Microbiol. Biotechnol. 2011, 89, 475–492. [Google Scholar] [CrossRef] [PubMed]
- ElGammal, E.A.M.A.E.; Mahran, A.H.; El Ashry, S.H.; Fahmy, S.H. The Cytotoxic Effect of Cysteamine and Its Combinations with Various Endodontic Intracanal Medications on Fibroblast Cells: In Vitro Study. Bull. Natl. Res. Cent. 2023, 47, 74. [Google Scholar] [CrossRef]
- Kienberger, J.; Noormofidi, N.; Mühlbacher, I.; Klarholz, I.; Harms, C.; Slugovc, C. Antimicrobial Equipment of Poly(Isoprene) Applying Thiol-ene Chemistry. J. Polym. Sci. A Polym. Chem. 2012, 50, 2236–2243. [Google Scholar] [CrossRef]
- Palencia, M.S.; Lerma, T.A.; Combatt, E.M. Hydrogels Based in Cassava Starch with Antibacterial Activity for Controlled Release of Cysteamine-Silver Nanostructured Agents. CCB 2017, 11, 28–35. [Google Scholar] [CrossRef]
- Sun, J.; Ma, X.; Li, R.; Lin, M.; Shu, L.; Chen, X. Antimicrobial Nanostructured Assemblies with Extremely Low Toxicity and Potent Activity to Eradicate Staphylococcus Aureus Biofilms. Small 2023, 19, 2204039. [Google Scholar] [CrossRef] [PubMed]
- Namata, F.; Sanz Del Olmo, N.; Molina, N.; Malkoch, M. Synthesis and Characterization of Amino-Functional Polyester Dendrimers Based On Bis-MPA with Enhanced Hydrolytic Stability and Inherent Antibacterial Properties. Biomacromolecules 2023, 24, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Stenström, P.; Hjorth, E.; Zhang, Y.; Andrén, O.C.J.; Guette-Marquet, S.; Schultzberg, M.; Malkoch, M. Synthesis and In Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties. Biomacromolecules 2017, 18, 4323–4330. [Google Scholar] [CrossRef] [PubMed]
- Ergene, C.; Palermo, E.F. Self-Immolative Polymers with Potent and Selective Antibacterial Activity by Hydrophilic Side Chain Grafting. J. Mater. Chem. B 2018, 6, 7217–7229. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 8692:2012; Water Quality—Freshwater Algal Growth Inhibition Test with Unicellular Green Algae. ISO: Geneva, Switzerland, 2012.
- Vosmanská, V.; Kolářová, K.; Rimpelová, S.; Kolská, Z.; Švorčík, V. Antibacterial Wound Dressing: Plasma Treatment Effect on Chitosan Impregnation and in Situ Synthesis of Silver Chloride on Cellulose Surface. RSC Adv. 2015, 5, 17690–17699. [Google Scholar] [CrossRef]
- Slepicka, P.; Kasalkova, N.S.; Siegel, J.; Kolska, Z.; Bacakova, L.; Svorcik, V. Nano-Structured and Functionalized Surfaces for Cytocompatibility Improvement and Bactericidal Action. Biotechnol. Adv. 2015, 33, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Kolarova, K.; Vosmanska, V.; Rimpelova, S.; Ulbrich, P.; Svorcik, V. Silver Nanoparticles Stabilized Using Chitosan Films: Preparation, Properties and Antibacterial Activity. J. Nanosci. Nanotechnol. 2015, 15, 10120–10126. [Google Scholar] [CrossRef]
- Fraser-Pitt, D.J.; Mercer, D.K.; Smith, D.; Kowalczuk, A.; Robertson, J.; Lovie, E.; Perenyi, P.; Cole, M.; Doumith, M.; Hill, R.L.R.; et al. Cysteamine, an Endogenous Aminothiol, and Cystamine, the Disulfide Product of Oxidation, Increase Pseudomonas Aeruginosa Sensitivity to Reactive Oxygen and Nitrogen Species and Potentiate Therapeutic Antibiotics against Bacterial Infection. Infect. Immun. 2018, 86, e00947-17. [Google Scholar] [CrossRef] [PubMed]
- Novák, D.; Vrba, J.; Zatloukalová, M.; Roubalová, L.; Stolarczyk, K.; Dorčák, V.; Vacek, J. Cysteamine Assay for the Evaluation of Bioactive Electrophiles. Free Radic. Biol. Med. 2021, 164, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ju, B.; Zhang, S. Preparation of Cysteamine-Modified Cellulose Nanocrystal Adsorbent for Removal of Mercury Ions from Aqueous Solutions. Cellulose 2019, 26, 4971–4985. [Google Scholar] [CrossRef]
- Kolská, Z.; Polanský, R.; Prosr, P.; Zemanová, M.; Ryšánek, P.; Slepička, P.; Švorčík, V. Properties of Polyamide Nanofibers Treated by UV-A Radiation. Mater. Lett. 2018, 214, 264–267. [Google Scholar] [CrossRef]
- Ferry, L.; Vigier, G.; Bessede, J.L. Effect of Ultraviolet Radiation on Polytetrafluoroethylene: Morphology Influence. Polym. Adv. Technol. 1996, 7, 493–500. [Google Scholar] [CrossRef]
- Lupínková, S.; Benkocká, M.; Ryšánek, P.; Kolská, Z. Enhancing Immobilization of Iron Oxide Particles on Various Polymer Surfaces. Polym. Eng. Sci. 2022, 62, 1463–1472. [Google Scholar] [CrossRef]
- Kolská, Z.; Řezníčková, A.; Švorčík, V. Surface Characterization of Polymer Foils. e-Polymers 2012, 12, 960–972. [Google Scholar] [CrossRef]
- Silovská, T.; Matoušek, J.; Fajstavr, D.; Švorčík, V.; Kolská, Z. Antimicrobial Effect of Polymers Grafted with Cinnamaldehyde. Mater. Lett. 2020, 277, 128274. [Google Scholar] [CrossRef]
- Yousif, E.; Ahmed, D.S.; Ahmed, A.A.; Hameed, A.S.; Muhamed, S.H.; Yusop, R.M.; Redwan, A.; Mohammed, S.A. The Effect of High UV Radiation Exposure Environment on the Novel PVC Polymers. Environ. Sci. Pollut. Res. 2019, 26, 9945–9954. [Google Scholar] [CrossRef] [PubMed]
- Zaplotnik, R.; Vesel, A. Effect of VUV Radiation on Surface Modification of Polystyrene Exposed to Atmospheric Pressure Plasma Jet. Polymers 2020, 12, 1136. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zuber, F.; Maniura-Weber, K.; Brugger, J.; Ren, Q. Nanostructured Surface Topographies Have an Effect on Bactericidal Activity. J. Nanobiotechnol. 2018, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S.; Mishra, A. Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. In Engineered Antimicrobial Surfaces; Snigdha, S., Thomas, S., Radhakrishnan, E.K., Kalarikkal, N., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2020; pp. 109–121. ISBN 9789811546297. [Google Scholar]
- Finlay, J.A. The Influence of Surface Wettability on the Adhesion Strength of Settled Spores of the Green Alga Enteromorpha and the Diatom Amphora. Integr. Comp. Biol. 2002, 42, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, C.; Xu, S.; Pang, X.; Cai, G.; Wang, J. Preparation of Zwitterionic Polymer-Functionalized Cotton Fabrics and the Performance of Anti-Biofouling and Long-Term Biofilm Resistance. Colloid Interface Sci. Commun. 2018, 24, 98–104. [Google Scholar] [CrossRef]
- Ma, W.; Soroush, A.; Luong, T.V.A.; Rahaman, M.S. Cysteamine- and Graphene Oxide-Mediated Copper Nanoparticle Decoration on Reverse Osmosis Membrane for Enhanced Anti-Microbial Performance. J. Colloid Interface Sci. 2017, 501, 330–340. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Tang, C.-C.; Wu, H.-H.; Wang, Y.-S.; Chen, Y.-F. Antibacterial Activity of Cysteine-Derived Cationic Dipeptides. Int. J. Pept. Res. Ther. 2020, 26, 1107–1114. [Google Scholar] [CrossRef]
Sample | Description |
---|---|
Pristine | Pristine (unmodified foil) |
UV10 | Polymer foil activated by UV radiation for 10 min |
UV30 | Polymer foil activated by UV radiation for 30 min |
UV60 | Polymer foil activated by UV radiation for 60 min |
UV10_CYS10 | Polymer foil activated by UV radiation for 10 min and grafted with 10 wt. % CYS |
UV30_CYS10 | Polymer foil activated by UV radiation for 30 min and grafted with 10 wt. % CYS |
UV60_CYS10 | Polymer foil activated by UV radiation for 60 min and grafted with 10 wt. % CYS |
UV10_CYS20 | Polymer foil activated by UV radiation for 10 min and grafted with 20 wt. % CYS |
UV30_CYS20 | Polymer foil activated by UV radiation for 30 min and grafted with 20 wt. % CYS |
UV60_CYS20 | Polymer foil activated by UV radiation for 60 min and grafted with 20 wt. % CYS |
UV10_CYS30 | Polymer foil activated by UV radiation for 10 min and grafted with 30 wt. % CYS |
UV30_CYS30 | Polymer foil activated by UV radiation for 30 min and grafted with 30 wt. % CYS |
UV60_CYS30 | Polymer foil activated by UV radiation for 60 min and grafted with 30 wt. % CYS |
UPVC | C (1s) | Cl (2p) | O (1s) | N (1s) | S (2p) | PEEK | C (1s) | O (1s) | N (1s) | S (2p) |
---|---|---|---|---|---|---|---|---|---|---|
Pristine | 83.3 | 9.0 | 7.7 | - | - | Pristine | 84.6 | 15.4 | - | - |
UV10 | 77.4 | 14.8 | 7.8 | - | - | UV10 | 81.2 | 18.8 | - | - |
UV30 | 74.8 | 17.0 | 8.2 | - | - | UV30 | 77.3 | 22.7 | - | - |
UV60 | 71.2 | 18.8 | 10.0 | - | - | UV60 | 76.9 | 23.1 | - | - |
UV10_CYS10 | 77.7 | 13.2 | 7.5 | 1.0 | 0.6 | UV10_CYS10 | 80.8 | 13.1 | 3.2 | 2.9 |
UV30_CYS10 | 77.2 | 13.0 | 7.2 | 1.7 | 0.9 | UV30_CYS10 | 79.7 | 13.0 | 3.6 | 3.7 |
UV60_CYS10 | 76.8 | 13.1 | 7.0 | 2.0 | 1.1 | UV60_CYS10 | 79.3 | 12.1 | 4.0 | 4.6 |
UV10_CYS20 | 75.4 | 15.6 | 7.2 | 1.1 | 0.7 | UV10_CYS20 | 76.9 | 15.4 | 3.8 | 3.9 |
UV30_CYS20 | 75.1 | 15.1 | 7.1 | 1.7 | 1.0 | UV30_CYS20 | 78.1 | 12.5 | 4.5 | 4.9 |
UV60_CYS20 | 75.0 | 15.2 | 6.8 | 1.9 | 1.1 | UV60_CYS20 | 78.0 | 12.8 | 4.3 | 4.9 |
UV10_CYS30 | 71.3 | 17.6 | 7.6 | 1.9 | 1.6 | UV10_CYS30 | 77.1 | 15.1 | 3.7 | 4.1 |
UV30_CYS30 | 70.7 | 17.3 | 7.6 | 2.6 | 1.8 | UV30_CYS30 | 76.0 | 12.5 | 5.1 | 6.4 |
UV60_CYS30 | 70.8 | 17.1 | 7.4 | 2.7 | 1.0 | UV60_CYS30 | 76.0 | 12.7 | 5.2 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neubertová, V.; Silovská, T.; Švorčík, V.; Kolská, Z. Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Polymers 2025, 17, 251. https://doi.org/10.3390/polym17020251
Neubertová V, Silovská T, Švorčík V, Kolská Z. Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Polymers. 2025; 17(2):251. https://doi.org/10.3390/polym17020251
Chicago/Turabian StyleNeubertová, Viktorie, Tereza Silovská, Václav Švorčík, and Zdeňka Kolská. 2025. "Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae" Polymers 17, no. 2: 251. https://doi.org/10.3390/polym17020251
APA StyleNeubertová, V., Silovská, T., Švorčík, V., & Kolská, Z. (2025). Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae. Polymers, 17(2), 251. https://doi.org/10.3390/polym17020251