Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Electrospun Membrane Post-Treatment
2.4. Characterization of the Membrane
2.5. Water Contact Angle Measurement
2.6. Adhesion, Water Absorption, and Filament Shedding Properties
2.7. Mechanical Properties
2.8. Cytotoxicity Test
2.9. Osteogenic Differentiation Test
2.10. In Vivo Study
3. Results and Discussion
3.1. Surface Morphology/Composition Analysis
3.2. Water Contact Angle of the Membrane
3.3. Adhesion, Water Absorption, and Filament Shedding Properties
3.4. Mechanical Properties of the Membrane
3.5. The Impact of Hydrophilicity/Hydrophobicity on Cell Experiments
3.6. The Impact of Tricalcium Phosphate (β-TCP) Powder Addition on Cell Experiments
3.7. Alveolar Bone Regeneration In Vivo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Buduneli, N. Anatomy of Periodontal Tissues. In Biomarkers in Periodontal Health and Disease; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Liang, Y.; Luan, X.; Liu, X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact. Mater. 2020, 5, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.D.; Kim, K.H.; Lee, Y.M.; Ku, Y.; Seol, Y.J. Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceuticals 2021, 14, 456. [Google Scholar] [CrossRef]
- Nguyen-Thi, T.D.; Nguyen-Huynh, B.H.; Vo-Hoang, T.T.; Nguyen-Thanh, T. Stem cell therapies for periodontal tissue regeneration: A meta-analysis of clinical trials. J. Oral. Biol. Craniofac Res. 2023, 13, 589–597. [Google Scholar] [CrossRef]
- Dos Santos, V.I.; Merlini, C.; Aragones, A.; Cesca, K.; Fredel, M.C. In vitro evaluation of bilayer membranes of PLGA/hydroxyapatite/beta-tricalcium phosphate for guided bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110849. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, C.; Zhang, C.; Shi, J.; Shen, S.G.; Yuan, Y.; Si, J. A Novel Immunoregulatory PEGylated Poly(glycerol sebacate)/β-TCP Membrane for Application in Guided Bone Regeneration. Adv. Mater. Interfaces 2022, 9, 2101218. [Google Scholar] [CrossRef]
- Castro, K.C.; Campos, M.G.N.; Mei, L.H.I. Hyaluronic acid electrospinning: Challenges, applications in wound dressings and new perspectives. Int. J. Biol. Macromol. 2021, 173, 251–266. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, H.; Luo, J.; Lin, S.; Yang, G.; Zhou, M.; Tao, J. Shape memory and hemostatic silk-laponite scaffold for alveolar bone regeneration after tooth extraction trauma. Int. J. Biol. Macromol. 2024, 260, 129454. [Google Scholar] [CrossRef]
- Liu, J.; Kerns, D.G. Suppl 1: Mechanisms of Guided Bone Regeneration: A Review. Open Dent. J. 2014, 8, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, E.; Alam, M.; Yazdanian, M.; Tebyanian, H.; Yazdanian, A.; Seifalian, A.; Mosaddad, S.A. Current biocompatible materials in oral regeneration: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2020, 9, 11731–11755. [Google Scholar] [CrossRef]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, Y.; Li, Z.; Zhou, P.; Mao, Y. Electrospun nanofibrous membrane for biomedical application. SN Appl. Sci. 2022, 4, 172. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Zhou, X.C.; Cao, H.; Zhang, H.W.; Wang, D.P.; Guo, J.M.; Wang, J.F. Barrier membranes for periodontal guided bone regeneration: A potential therapeutic strategy. Front. Mater. 2023, 10, 1220420. [Google Scholar] [CrossRef]
- Aprile, P.; Letourneur, D.; Simon-Yarza, T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv. Healthc. Mater. 2020, 9, e2000707. [Google Scholar] [CrossRef]
- Naik, C.; Srinath, N.; Ranganath, M.K.; Umashankar, D.N.; Gupta, H. Evaluation of polycaprolactone scaffold for guided bone regeneration in maxillary and mandibular defects: A clinical study. Natl. J. Maxillofac. Surg. 2020, 11, 207–212. [Google Scholar] [CrossRef]
- Isaji, D.; Watanabe, T.; Takahashi, T.; Sato, H.; Nakada, H.; Tanimoto, Y.; Fuse, M.; Kimoto, S.; Kawai, Y. Preparation and Evaluation of a Poly(Lactic-co-glycolic Acid)Membrane Containing β-TCP. Int. J. Oral-Med. Sci. 2020, 18, 248–256. [Google Scholar] [CrossRef]
- Trousil, J.; Cabral, J.V.; Voukali, E.; Novackova, J.; Pop-Georgievski, O.; Vacik, T.; Studeny, P.; Studenovska, H.; Jirsova, K. Electrospun poly(l-lactide-co-dl-lactide) nanofibrous scaffold as substrate for ex vivo limbal epithelial cell cultivation. Heliyon 2024, 10, e30970. [Google Scholar] [CrossRef]
- Targonska, S.; Dobrzynska-Mizera, M.; Wujczyk, M.; Rewak-Soroczynska, J.; Knitter, M.; Dopierala, K.; Andrzejewski, J.; Wiglusz, R.J. New way to obtain the poly(L-lactide-co-D,L-lactide) blend filled with nanohydroxyapatite as biomaterial for 3D-printed bone-reconstruction implants. Eur. Polym. J. 2022, 165, 110997. [Google Scholar] [CrossRef]
- de Oliveira Junior, J.M.; Montagner, P.G.; Carrijo, R.C.; Martinez, E.F. Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria. Sci. Rep. 2021, 11, 4484. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, B.L.G.; Dobelin, N. beta-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Castro, V.O.; Fredel, M.C.; Aragones, A.; Barra, G.M.D.; Cescac, K.; Merlini, C. Electrospun fibrous membranes of poly (lactic-co-glycolic acid) with β-tricalcium phosphate for guided bone regeneration application. Polym. Test. 2020, 86, 106489. [Google Scholar] [CrossRef]
- Tammaro, L.; Vittoria, V.; Wyrwa, R.; Weisser, J.; Beer, B.; Thein, S.; Schnabelrauch, M. Fabrication and characterization of electrospun polylactide/β-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. BioNanoMaterials 2014, 15, 9–20. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Budynas, R.G.; Nisbett, J.K. Shigley’s Mechanical Engineering Design; McGraw Hill: Columbus, OH, USA, 2014. [Google Scholar]
- Jarusuwannapoom, T.; Hongroijanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 2005, 41, 409–421. [Google Scholar] [CrossRef]
- Yang, J.; Li, F.; Lu, G.; Lu, Y.; Song, C.; Zhou, R.; Wu, S. Electrospun Biodegradable Poly(L-lactic acid) Nanofiber Membranes as Highly Porous Oil Sorbent Nanomaterials. Nanomaterials 2022, 12, 2670. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Sun, X.; Xu, G.; Su, Y.; Liu, D. The effects of beta-TCP on mechanical properties, corrosion behavior and biocompatibility of beta-TCP/Zn-Mg composites. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110397. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, L.; Passador, F.R.; Costa, M.M.; Lobo, A.O.; Sousa, E. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Mater. Sci. Eng. C 2015, 52, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Wahyudi, W.; Subagyo, R.; Gapsari, F. Physical and chemical mechanisms of hydrophobicity of nanoparticle membranes (Mg+Al2O3). J. Achiev. Mater. Manuf. Eng. 2019, 2, 57–68. [Google Scholar] [CrossRef]
- Mazzucco, A. Hyaluronic Acid: Evaluation of Efficacy with Different Molecular Weights. Int. J. Chem. Res. 2019, 1, 13–18. [Google Scholar] [CrossRef]
- Huang, C.; Fang, G.; Zhao, Y.; Bhagia, S.; Meng, X.; Yong, Q.; Ragauskas, A.J. Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydr. Polym. 2019, 222, 115036. [Google Scholar] [CrossRef]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Manjari, M.S.; Aaron, K.P.; Muralidharan, C.; Rose, C. Highly biocompatible novel polyphenol cross-linked collagen scaffold for potential tissue engineering applications. React. Funct. Polym. 2020, 153, 104630. [Google Scholar] [CrossRef]
- Alehosseini, M.; Golafshan, N.; Kharaziha, M. Design and characterization of poly-ε-caprolactone electrospun fibers incorporated with α-TCP nanopowder as a potential guided bone regeneration membrane. Mater. Today Proc. 2018, 5, 15783–15789. [Google Scholar] [CrossRef]
- Ezati, M.; Safavipour, H.; Houshmand, B.; Faghihi, S. Development of a PCL/gelatin/chitosan/beta-TCP electrospun composite for guided bone regeneration. Prog. Biomater. 2018, 7, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.X.; Wu, C.X.; Yang, W.G.; Liang, W.F.; Yu, H.B.; Liu, L.Q. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Farman, H.; Khan, M.A.; Alamoudi, A.J.; Sharif, F.; Alshamrani, M.; Liaqat, S.; Rizg, W.Y.; Shaik, R.A.; Muhammad, N. Fabrication of polymeric composite GTR membrane from eggshell powder, polylactic acid and polyethylene glycol for periodontal application: In vitro evaluation. Front. Mater. 2023, 10, 1234065. [Google Scholar] [CrossRef]
- Liu, L.; Dai, H.; Wu, Y.; Li, B.; Yi, J.; Xu, C.; Wu, X. In vitro and in vivo mechanism of hepatocellular carcinoma inhibition by beta-TCP nanoparticles. Int. J. Nanomed. 2019, 14, 3491–3502. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Drolle, E.; Nakagawa, H.; Hisamura, R.; Ngo, W.; Jones, L. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Cont. Lens Anterior Eye 2021, 44, 101334. [Google Scholar] [CrossRef] [PubMed]
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications-A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 10296. [Google Scholar] [CrossRef]
- Wang, S.; Meng, S.; Zhou, X.; Gao, Z.; Piao, M.G. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023, 15, 820. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, C.; Chen, S.; Jia, W.; Liu, L.; Liu, Y.; Yang, Y.; Jiao, K.; Yan, Y.; Cheng, Z.; et al. Multifunctional bilayer nanofibrous membrane enhances periodontal regeneration via mesenchymal stem cell recruitment and macrophage polarization. Int. J. Biol. Macromol. 2024, 273, 132924. [Google Scholar] [CrossRef]
- Wei, F.; Liu, G.; Guo, Y.; Crawford, R.; Chen, Z.; Xiao, Y. Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment. Biomater. Sci. 2018, 6, 2156–2171. [Google Scholar] [CrossRef]
- Lagadec, P.; Balaguer, T.; Boukhechba, F.; Michel, G.; Bouvet-Gerbettaz, S.; Bouler, J.M.; Scimeca, J.C.; Rochet, N. Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation. Acta Biomater. 2017, 57, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Bonazza, V.; Hajistilly, C.; Patel, D.; Patel, J.; Woo, R.; Cocchi, M.A.; Buffoli, B.; Lancini, D.; Gheno, E.; Rezzani, R.; et al. Growth Factors Release From Concentrated Growth Factors: Effect of beta-Tricalcium Phosphate Addition. J. Craniofac. Surg. 2018, 29, 2291–2295. [Google Scholar] [CrossRef]
- Kucko, S.K.; Raeman, S.M.; Keenan, T.J. Current Advances in Hydroxyapatite- and β-Tricalcium Phosphate-Based Composites for Biomedical Applications: A Review. Biomed. Mater. Devices 2022, 1, 49–65. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Yang, Y.; Zheng, B.; Yan, F.; Wei, F.; Friis, T.E.; Crawford, R.W.; Xiao, Y. Alteration of clot architecture using bone substitute biomaterials (beta-tricalcium phosphate) significantly delays the early bone healing process. J. Mater. Chem. B 2018, 6, 8204–8213. [Google Scholar] [CrossRef]
- Wang, B.; Xie, X.; Jiang, W.; Zhan, Y.; Zhang, Y.; Guo, Y.; Wang, Z.; Guo, N.; Guo, K.; Sun, J. Osteoinductive micro-nano guided bone regeneration membrane for in situ bone defect repair. Stem Cell Res. Ther. 2024, 15, 135. [Google Scholar] [CrossRef]
Sample | t (mm) | BS (g) | AS (g) | WD (g) | WD (%) |
---|---|---|---|---|---|
1 | 0.322 | 0.0707 | 0.0897 | 0.0190 | 26.9 |
2 | 0.316 | 0.0707 | 0.0879 | 0.0172 | 24.3 |
3 | 0.321 | 0.0706 | 0.0883 | 0.0177 | 25.1 |
Average | 0.320 | 0.0707 | 0.0887 | 0.0180 | 25.4 |
Sample | t (mm) | BS (g) | AS (g) | WD (g) | WD (%) | Texture |
---|---|---|---|---|---|---|
1 | 0.237 | 0.0437 | 0.0519 | 0.0082 | 18.8 | Loose and soft |
2 | 0.239 | 0.0522 | 0.0578 | 0.0056 | 10.7 | Firm |
3 | 0.233 | 0.0500 | 0.0555 | 0.0055 | 11.0 | Firm |
Samples | Force (N) | Thickness (mm) | Width (mm) | Stress (MPa) | Strain % | Texture |
---|---|---|---|---|---|---|
1 | 0.758357 | 0.303 | 3.18 | 0.780 | 11.538 | Loose and soft |
2 | 0.840041 | 0.223 | 3.18 | 1.136 | 22.532 | Firm |
3 | 0.870360 | 0.244 | 3.18 | 1.118 | 24.745 | Firm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naig, P.J.; Kuo, Z.-Y.; Chung, M.-F.; Chen, C.-H.; Wang, C.-Y.; Hung, K.-Y. Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes. Polymers 2025, 17, 256. https://doi.org/10.3390/polym17030256
Naig PJ, Kuo Z-Y, Chung M-F, Chen C-H, Wang C-Y, Hung K-Y. Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes. Polymers. 2025; 17(3):256. https://doi.org/10.3390/polym17030256
Chicago/Turabian StyleNaig, Princess Joy, Zih-Yin Kuo, Min-Fan Chung, Chih-Hao Chen, Chi-Yun Wang, and Kuo-Yung Hung. 2025. "Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes" Polymers 17, no. 3: 256. https://doi.org/10.3390/polym17030256
APA StyleNaig, P. J., Kuo, Z.-Y., Chung, M.-F., Chen, C.-H., Wang, C.-Y., & Hung, K.-Y. (2025). Enhancing Bone Regeneration Using Blended Poly(L-lactide-co-D, L-lactide) and β-Tricalcium Phosphate Nanofibrous Periodontal Biodegradable Membranes. Polymers, 17(3), 256. https://doi.org/10.3390/polym17030256