Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels
Abstract
:1. Introduction
2. Experimental
2.1. Luffa and CNC Modification
2.2. Sample Preparation for Sound Absorption Test
2.3. Bulk Density and Weight Measurement
2.4. Scanning Electron Microscopy
2.5. Sound Absorption Measurements
3. Results and Discussion
3.1. Morphologies of Neat and Modified Luffa
3.2. Sound Absorption Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jephcote, C.; Clark, S.N.; Hansell, A.L.; Jones, N.; Chen, Y.; Blackmore, C.; Eminson, K.; Evans, M.; Gong, X.; Adams, K.; et al. Spatial assessment of the attributable burden of disease due to transportation noise in England. Environ. Int. 2023, 178, 107966. [Google Scholar] [CrossRef] [PubMed]
- Allahverdy, A.; Homayoun Jafari, A. Non-auditory Effect of Noise Pollution and Its Risk on Human Brain Activity in Different Audio Frequency Using Electroence-phalogram Complexity. Iran. J. Public Health 2016, 45, 1332–1339. [Google Scholar] [PubMed]
- Tao, Y.; Ren, M.; Zhang, H.; Peijs, T. Recent progress in acoustic materials and noise control strategies—A review. Appl. Mater. Today 2021, 24, 101141. [Google Scholar] [CrossRef]
- Dong, S.; Duan, Y.; Chen, X.; You, F.; Jiang, X.; Wang, D.; Hu, D.; Zhao, P. Recent Advances in Preparation and Structure of Polyurethane Porous Materials for Sound Absorbing Application. Macromol. Rapid Commun. 2024, 45, e2400108. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, Y.; Chen, J.; Wang, D. The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Adv. Mater. Sci. Eng. 2015, 2015, 317561. [Google Scholar] [CrossRef]
- Cops, M.J.; McDaniel, J.G.; Magliula, E.A.; Bamford, D.J.; Bliefnick, J. Measurement and analysis of sound absorption by a composite foam. Appl. Acoust. 2020, 160, 107138. [Google Scholar] [CrossRef]
- Lee, J.; Jung, I. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl. Acoust. 2019, 151, 10–21. [Google Scholar] [CrossRef]
- Sung, G.; Kim, J.H. Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos. Sci. Technol. 2017, 146, 147–154. [Google Scholar] [CrossRef]
- Ryu, S.C.; Kim, D.H.; Kim, J.; Lee, J.W.; Kim, W.N. Effects of multiwall carbon nanotube and perfluoroalkane additives on the sound absorption properties of flexible polyurethane foams. Polym. Compos. 2017, 39, E1087–E1098. [Google Scholar] [CrossRef]
- Omrani, I.; Mohammadi Berenjegani, R.; Sharghi Asbagh, E.; Yeganeh, H. Soundproofing properties of open- cell microcellular polyurethane foam containing styrene-grafted polyester polyol. J. Reinf. Plast. Compos. 2024, 07316844241242871. [Google Scholar] [CrossRef]
- Corredor-Bedoya, A.C.; Acuña, B.; Serpa, A.L.; Masiero, B. Effect of the excitation signal type on the absorption coefficient measurement using the impedance tube. Appl. Acoust. 2021, 171, 107659. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.H. Performance evaluations of flexible polyurethane foams manufactured with castor oil-based bio-polyol. Polym. Test. 2023, 124, 108069. [Google Scholar] [CrossRef]
- Yuan, B.; Fang, X.; Liu, J.; Liu, Y.; Zhu, R.; Seçgin, A. Improved Sound Absorption Properties in Polyurethane Foams by the Inclusion of Al2O3 Nanoparticles. Shock Vib. 2021, 2021, 8010391. [Google Scholar] [CrossRef]
- Boland, C.S.; De Kleine, R.; Keoleian, G.A.; Lee, E.C.; Kim, H.C.; Wallington, T.J. Life Cycle Impacts of Natural Fiber Composites for Automotive Applications: Effects of Renewable Energy Content and Lightweighting. J. Ind. Ecol. 2015, 20, 179–189. [Google Scholar] [CrossRef]
- Anastasiou, D.E. Life cycle assessment of Luffa-reinforced epoxy composites: Untreated versus chemically treated fibers. J. Appl. Polym. Sci. 2024, 141, e55952. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Dai, C. Luffa cylindrical fibre as a natural reinforcement for cement composites: A review. J. Sustain. Cem.-Based Mater. 2021, 11, 297–307. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Ismadi; Amin, Y.; Damayanti, R.; Lubis, M.A.R.; Wulandari, A.P.; Nurindah; Iswanto, A.H.; et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers 2021, 13, 4280. [Google Scholar] [CrossRef]
- Suriani, M.J.; Ilyas, R.A.; Zuhri, M.Y.M.; Khalina, A.; Sultan, M.T.H.; Sapuan, S.M.; Ruzaidi, C.M.; Wan, F.N.; Zulkifli, F.; Harussani, M.M.; et al. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers 2021, 13, 3514. [Google Scholar] [CrossRef]
- Bhingare, N.H.; Prakash, S.; Jatti, V.S. A review on natural and waste material composite as acoustic material. Polym. Test. 2019, 80, 106142. [Google Scholar] [CrossRef]
- Halashi, K.; Taban, E.; Soltani, P.; Amininasab, S.; Samaei, E.; Moghadam, D.N.; Khavanin, A. Acoustic and thermal performance of luffa fiber panels for sustainable building applications. Build. Environ. 2024, 247, 111051. [Google Scholar] [CrossRef]
- Ismail, A.S.; Jawaid, M.; Naveen, J. Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites. Materials 2019, 12, 2094. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.-S. Sound Absorbing Properties of Selected Green Material—A Review. Forests 2023, 14, 1366. [Google Scholar] [CrossRef]
- Jin, Z.; Li, J.; Wang, Q.; Su, W.; Duan, X.; Tang, Z. Characterization of multifunctional panels from jute fibers for interior wall covering. Ind. Crops Prod. 2021, 167, 113530. [Google Scholar] [CrossRef]
- Mohammadi, M.; Taban, E.; Tan, W.H.; Che Din, N.B.; Putra, A.; Berardi, U. Recent progress in natural fiber reinforced composite as sound absorber material. J. Build. Eng. 2024, 84, 108514. [Google Scholar] [CrossRef]
- Samaei, S.E.; Berardi, U.; Soltani, P.; Taban, E. Experimental and modeling investigation of the acoustic behavior of sustainable kenaf/yucca composites. Appl. Acoust. 2021, 183, 108332. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012, 55, 2278–2283. [Google Scholar] [CrossRef]
- Taban, E.; Soltani, P.; Berardi, U.; Putra, A.; Mousavi, S.M.; Faridan, M.; Samaei, S.E.; Khavanin, A. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Build. Environ. 2020, 180, 107087. [Google Scholar] [CrossRef]
- Sari, N.H.; Wardana, I.N.G.; Irawan, Y.S.; Siswanto, E. Physical and Acoustical Properties of Corn Husk Fiber Panels. Adv. Acoust. Vib. 2016, 2016, 5971814. [Google Scholar] [CrossRef]
- Putra, A.; Or, K.H.; Selamat, M.Z.; Nor, M.J.M.; Hassan, M.H.; Prasetiyo, I. Sound absorption of extracted pineapple-leaf fibres. Appl. Acoust. 2018, 136, 9–15. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Marescotti, C.; Mazzanti, V.; Mollica, F.; Pompoli, F. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Appl. Acoust. 2019, 150, 279–289. [Google Scholar] [CrossRef]
- Xiang, H.-F.; Wang, D.; Liua, H.-C.; Zhao, N.; Xu, J. Investigation on sound absorption properties of kapok fibers. Chin. J. Polym. Sci. 2013, 31, 521–529. [Google Scholar] [CrossRef]
- Taban, E.; Khavanin, A.; Ohadi, A.; Putra, A.; Jafari, A.J.; Faridan, M.; Soleimanian, A. Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Build. Environ. 2019, 161, 106274. [Google Scholar] [CrossRef]
- Kassim, D.H.; Putra, A.; Ramlan, R. Enhancement of sound absorption of coir fiber using thin layer of kapok fibers. J. Nat. Fibers 2023, 20, 2164103. [Google Scholar] [CrossRef]
- Adeyanju, C.A.; Ogunniyi, S.; Ighalo, J.O.; Adeniyi, A.G.; Abdulkareem, S.A. A review on Luffa fibres and their polymer composites. J. Mater. Sci. 2020, 56, 2797–2813. [Google Scholar] [CrossRef]
- An, X.; Fan, H. Hybrid design and energy absorption of luffa-sponge-like hierarchical cellular structures. Mater. Des. 2016, 106, 247–257. [Google Scholar] [CrossRef]
- Dinata, I.M.K.; Ayu, R.; Mulyono, A.; Purwandaru, P.; Yusuf, M.; Purnawati, S. Utilization of Luffa for Acoustic Panel on Interior Wall, a Technical and Perceptual Approach. SHS Web Conf. 2024, 189, 01044. [Google Scholar] [CrossRef]
- Koruk, H.; Genc, G. Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 2015, 157, 166–168. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Shin, Y.; Jeon, J.; Kang, Y.J.; Jung, I. Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: Algorithmic approach and experimental validation. Appl. Acoust. 2023, 203, 109194. [Google Scholar] [CrossRef]
- Verdejo, R.; Stämpfli, R.; Alvarez-Lainez, M.; Mourad, S.; Rodriguez-Perez, M.A.; Brühwiler, P.A.; Shaffer, M. Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos. Sci. Technol. 2009, 69, 1564–1569. [Google Scholar] [CrossRef]
- Bondeson, D.; Mathew, A.; Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 2006, 13, 171–180. [Google Scholar] [CrossRef]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Börcsök, Z.; Pásztory, Z. The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. Eur. J. Wood Wood Prod. 2020, 79, 511–526. [Google Scholar] [CrossRef]
- ASTM C384; Standard Test Method for Impedance and Absorption of Acoustical Materials by Impedance Tube Method. 2022. Available online: https://www.astm.org/c0384-04r22.html (accessed on 19 January 2025).
- ASTM C423; Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. 2024. Available online: https://www.astm.org/c0423-23e01.html (accessed on 19 January 2025).
- Javadi, A.; Pourabdian, S.; Forouharmajd, F. The Effect of Low Frequency Noises Exposure on the Precision of Human at the Mathematical Tasks. Int. J. Prev. Med. 2022, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.T.; Magalhães, A.; Silva, J.F.; Fonseca, F. Impacts of low-frequency noise from industrial sources in residential areas. Appl. Acoust. 2021, 182, 108203. [Google Scholar] [CrossRef]
- Suthatho, A.; Rattanawongkun, P.; Tawichai, N.; Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N. Low-Density All-Cellulose Composites Made from Cotton Textile Waste with Promising Thermal Insulation and Acoustic Absorption Properties. ACS Appl. Polym. Mater. 2023, 6, 390–397. [Google Scholar] [CrossRef]
- Fallah-Shorshani, M.; Fruin, S.; Yin, X.; McConnell, R.; Franklin, M. Estimating near-roadway air pollution from multi-frequency noise measurements. Sci. Total Environ. 2024, 944, 173900. [Google Scholar] [CrossRef]
- Nourmohammadi, M.; Jahanmardi, R.; Moeenfard, H.; Zohuri, G.H.; Bazgir, S. Development of optimal polymeric foams with superior sound absorption and transmission loss. J. Appl. Polym. Sci. 2022, 139, e52507. [Google Scholar] [CrossRef]
- Sengupta, S.; Basu, G.; Datta, M.; Debnath, S.; Nath, D. Noise control material using jute (Corchorus olitorius): Effect of bulk density and thickness. J. Text. Inst. 2020, 112, 56–63. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Yang, T.; Hu, L.; Xiong, X.; Petrů, M.; Noman, M.T.; Mishra, R.; Militký, J. Sound Absorption Properties of Natural Fibers: A Review. Sustainability 2020, 12, 8477. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. [Google Scholar] [CrossRef]
- Kalauni, K.; Pawar, S.J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mater. 2019, 26, 1795–1819. [Google Scholar] [CrossRef]
- Hasani Baferani, A.; Ohadi, A.R.; Keshavarz, R. Toward mechanistic understanding of the relationship between the sound absorption and the natural and resonant frequencies of porous media. J. Acoust. Soc. Am. 2016, 140, 4246. [Google Scholar] [CrossRef] [PubMed]
- Otaru, A.J. Review on the Acoustical Properties and Characterisation Methods of Sound Absorbing Porous Structures: A Focus on Microcellular Structures Made by a Replication Casting Method. Met. Mater. Int. 2019, 26, 915–932. [Google Scholar] [CrossRef]
- Bravo, T.; Maury, C.; Pinhède, C. Vibroacoustic properties of thin micro-perforated panel absorbers. J. Acoust. Soc. Am. 2012, 132, 789–798. [Google Scholar] [CrossRef]
- Frommhold, W.; Fuchs, H.V.; Shengt, S. Acoustic performance of membrane absorbers. J. Sound Vib. 1994, 170, 621–636. [Google Scholar] [CrossRef]
- Abdi, D.D.; Monazzam, M.; Taban, E.; Putra, A.; Golbabaei, F.; Khadem, M. Sound absorption performance of natural fiber composite from chrome shave and coffee silver skin. Appl. Acoust. 2021, 182, 108264. [Google Scholar] [CrossRef]
CNC Solution Concentration (wt.%) | Average Mass Before Immersion (g) | Average Mass After Immersion (g) | Average CNC Absorbed (g) | CNC Loading in Panels (wt.%) |
---|---|---|---|---|
1 | 5.65 ± 0.79 | 5.83 ± 0.79 | 0.18 ± 0.04 | 3.13 ± 0.61 |
3 | 5.41 ± 0.74 | 5.82 ± 0.72 | 0.41 ± 0.03 | 7.01 ± 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekbatani, S.; Rattanawongkun, P.; Klayya, S.; Papageorgiou, D.G.; Soykeabkaew, N.; Zhang, H. Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels. Polymers 2025, 17, 281. https://doi.org/10.3390/polym17030281
Ekbatani S, Rattanawongkun P, Klayya S, Papageorgiou DG, Soykeabkaew N, Zhang H. Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels. Polymers. 2025; 17(3):281. https://doi.org/10.3390/polym17030281
Chicago/Turabian StyleEkbatani, Shahed, Phattharasaya Rattanawongkun, Supattra Klayya, Dimitrios G. Papageorgiou, Nattakan Soykeabkaew, and Han Zhang. 2025. "Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels" Polymers 17, no. 3: 281. https://doi.org/10.3390/polym17030281
APA StyleEkbatani, S., Rattanawongkun, P., Klayya, S., Papageorgiou, D. G., Soykeabkaew, N., & Zhang, H. (2025). Hierarchical Natural Fibre Composites Based on Cellulose Nanocrystal-Modified Luffa Structures for Binderless Acoustic Panels. Polymers, 17(3), 281. https://doi.org/10.3390/polym17030281