High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. PET-TM/PTFE-like TFC Membranes Synthesis
2.2. Membrane Characterization Techniques
2.3. Water Transport in Membrane Distillation Process
3. Results and Discussion
3.1. Wettability Properties of the As-Obtained TFC Membranes (Water Contact Angle)
3.2. Morphological Properties of the As-Obtained TFC Membranes (Scanning Electron Microscopy)
3.3. Compositional Properties of the As-Obtained TFC Membranes (Fourier Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy)
3.4. Water Transport in the Membrane Distillation Process
3.5. Temporal Performance of PET-TM/PTFE TFC Membranes in the AGMD Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme (UNEP). Challenges to International Waters—Regional Assessments in a Global Perspective; UNEP: Nairobi, Kenya, 2006. [Google Scholar]
- World Water Assessment Programme (WWAP). The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012. [Google Scholar]
- World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015. [Google Scholar]
- UNESCO. Valuing Water, The United Nations World Water Development Report 2021; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2021; ISBN 978-92-3-100434-6. [Google Scholar]
- UN-Water. Summary of Proceedings—UN 2023 Water Conference. In In Proceedings of the 2023 UN Water Conference, New York, NY, USA, 22–24 March 2023; UN-Water: New York, NY, USA, 2023. [Google Scholar]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, A.; Darwish, N.N.; Qasim, M.; Tawalbeh, M.; Darwish, N.A.; Hilal, N. Nuclear Desalination: A State-of-the-Art Review. Desalination 2019, 457, 39–61. [Google Scholar] [CrossRef]
- Bonyadi, S.; Chung, T.S. Flux Enhancement in Membrane Distillation by Fabrication of Dual Layer Hydrophilic–Hydrophobic Hollow Fiber Membranes. J. Membr. Sci. 2007, 306, 134–146. [Google Scholar] [CrossRef]
- Gryta, M. Influence of Polypropylene Membrane Surface Porosity on the Performance of Membrane Distillation Process. J. Membr. Sci. 2007, 287, 67–78. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, B.; Li, X.-M.; Wang, Z.; He, B.-Q.; He, T.; Jiang, B. CF4 Plasma Surface Modification of Asymmetric Hydrophilic Polyethersulfone Membranes for Direct Contact Membrane Distillation. J. Membr. Sci. 2012, 407–408, 164–175. [Google Scholar] [CrossRef]
- Rastegarpanah, A.; Mortaheb, H.R. Surface Treatment of Polyethersulfone Membranes for Applying in Desalination by Direct Contact Membrane Distillation. Desalination 2016, 377, 99–107. [Google Scholar] [CrossRef]
- Okiel, K.; El-Aassar, A.H.M.; Temraz, T.; El-Etriby, S.; Shawky, H.A. Performance Assessment of Synthesized CNT/Polypropylene Composite Membrane Distillation for Oil Field Produced Water Desalination. Desal. Water Treat. 2016, 57, 10995–11007. [Google Scholar] [CrossRef]
- Leaper, S.; Abdel-Karim, A.; Gad-Allah, T.A.; Gorgojo, P. Air-Gap Membrane Distillation as a One-Step Process for Textile Wastewater Treatment. Chem. Eng. J. 2019, 360, 1330–1340. [Google Scholar] [CrossRef]
- Eykens, L.; Hitsov, I.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. Direct Contact and Air Gap Membrane Distillation: Differences and Similarities Between Lab and Pilot Scale. Desalination 2017, 422, 91–100. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane Distillation: A Comprehensive Review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Misdan, N.; Ismail, A.F.; Hilal, N. Recent Advances in the Development of (Bio)fouling Resistant Thin Film Composite Membranes for Desalination. Desalination 2016, 380, 105–111. [Google Scholar] [CrossRef]
- Bhadra, M.; Roy, S.; Mitra, S. Flux Enhancement in Direct Contact Membrane Distillation by Implementing Carbon Nanotube Immobilized PTFE Membrane. Sep. Purif. Technol. 2016, 161, 136–143. [Google Scholar] [CrossRef]
- Eykens, L.; Hitsov, I.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Nopens, I.; Vander Bruggen, B. Influence of Membrane Thickness and Process Conditions on Direct Contact Membrane Distillation at Different Salinities. J. Membr. Sci. 2016, 498, 353–364. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Vigneswaran, S.; Jang, E.-K.; Choi, Y.-J.; Hwang, T.-M. Fouling Study on Vacuum-Enhanced Direct Contact Membrane Distillation for Seawater Desalination. Desal. Water Treat. 2016, 57, 10042–10051. [Google Scholar] [CrossRef]
- Luo, M.-L.; Zhao, J.-Q.; Tang, W.; Pu, C.-S. Hydrophilic Modification of Poly(ether sulfone) Ultrafiltration Membrane Surface by Self-Assembly of TiO2 Nanoparticles. Appl. Surf. Sci. 2005, 249, 76–84. [Google Scholar] [CrossRef]
- Pandele, A.M.; Comanici, F.E.; Carp, C.A.; Miculescu, F.; Voicu, S.I.; Thakur, V.K.; Serban, B.C. Synthesis and Characterization of Cellulose Acetate-Hydroxyapatite Micro and Nano Composites Membranes for Water Purification and Biomedical Applications. Vacuum 2017, 146, 599–605. [Google Scholar] [CrossRef]
- Voicu, S.I.; Ninciuleanu, C.M.; Muhulet, O.; Miculescu, M. Cellulose Acetate Membranes with Controlled Porosity and Their Use for the Separation of Amino Acids and Proteins. J. Optoelectron. Adv. Mater. 2014, 16, 903–908. [Google Scholar]
- Muscalu, C.; David, R.; Garea, S.A.; Nechifor, A.C.; Vaireanu, D.I.; Voicu, S.I.; Nechifor, G. Polysulfone-Polypyrrole Ionic Conductive Composite Membranes Synthesized by Phase Inversion with Chemical Reaction. In Proceedings of the 2009 International Semiconductor Conference, Sinaia, Romania, 12–14 October 2009; Volumes 1 and 2, pp. 557–560. [Google Scholar]
- Shannon, A.M.; Bohn, W.P.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Makkonen-Craigi, S.; Yashina, K.; Paronen, M. Track-Etched Ultrafiltration Polymer Membranes Produced by Light Ion Irradiation. Arcada Work. Pap. 2014, 11, 1–13. [Google Scholar]
- Makkonen-Craigi, S.; Paronenii, M. Potential Large-Scale Applications of Track-Etched Ultrafiltration Polymer Membranes. Arcada Work. Pap. 2014, 12, 1–16. [Google Scholar]
- Tai, S.L.; Abidin, M.N.Z.; Ma’amor, A.; Hashim, N.A.; Hashim, M.L.H. Polyethylene Terephthalate Membrane: A Review of Fabrication Techniques, Separation Processes, and Modifications. Sep. Purif. Technol. 2025, 354, 129343. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Güven, O.; Melnikova, G.B.; Dosmagambetov, S.S.; Borissenko, A.N.; Nurkassimov, A.K.; Kassymzhanov, M.T.; Zdorovets, M.V. Effect of Hydrophobized PET TeMs Membrane Pore-Size on Saline Water Treatment by Direct Contact Membrane Distillation. RSC Adv. 2024, 14, 4034–4042. [Google Scholar] [CrossRef] [PubMed]
- Kholodovych, V.; Welsh, W.J. Thermal-Oxidative Stability and Degradation of Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Mark, J.E., Ed.; Springer: New York, NY, USA, 2007; pp. 927–938. [Google Scholar] [CrossRef]
- Huang, J.; Martinez-Vega, J.; Malec, D. Morphological Evolution of Polytetrafluoroethylene (PTFE) during Thermal-Oxidative Ageing above and below the Melting Temperature. In Proceedings of the 2013 IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, 30 June–4 July 2013; pp. 628–631. [Google Scholar] [CrossRef]
- Shakayeva, A.K.; Yeszhanov, A.B.; Zhumazhanova, A.T.; Korolkov, I.V.; Zdorovets, M.V. Fabrication of Hydrophobic PET Track-Etched Membranes Using 2,2,3,3,4,4,4-Heptafluorobutyl Methacrylate for Water Desalination by Membrane Distillation. Eurasian J. Chem. 2024, 29, 81–88. [Google Scholar] [CrossRef]
- Kravets, L.I.; Yarmolenko, M.A.; Rogachev, A.A.; Gainutdinov, R.V.; Gilman, A.B.; Altynov, V.A.; Lizunov, N.E. Formation of Superhydrophobic Coatings on the Track-Etched Membrane Surface by the Method of Electron-Beam Deposition of Polymers in Vacuum. Inorg. Mater. Appl. Res. 2020, 11, 476–487. [Google Scholar] [CrossRef]
- Wilde, W. Evaporation of Polytetrafluoroethylene by Electron Bombardment of the Bulk Material. Thin Solid Film. 1974, 24, 101–111. [Google Scholar] [CrossRef]
- Rastogi, A.C.; Desu, S.B. Thermal Chemical Vapor Deposition of Fluorocarbon Polymer Thin Films in a Hot Filament Reactor. Polymer 2005, 46, 3440–3451. [Google Scholar] [CrossRef]
- Limb, S.J.; Labelle, C.B.; Gleason, K.K.; Edell, D.J.; Gleason, E.F. Growth of Fluorocarbon Polymer Thin Films with High CF2 Fractions and Low Dangling Bond Concentrations by Thermal Chemical Vapor Deposition. Appl. Phys. Lett. 1996, 68, 2810–2812. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Kita, R.; Tsuchiya, K.; Iwamori, S. Optical Characteristics of Poly(Tetrafluoroethylene) Thin Film Prepared by a Vacuum Evaporation. Jpn. J. Appl. Phys. 2016, 55, 02BB04. [Google Scholar] [CrossRef]
- Yi, N.; Bao, S.; Zhou, H.; Wang, Q.; Yang, J.; Xie, X. Preparation of Microstructure-Controllable Superhydrophobic Polytetrafluoroethylene Porous Thin Film by Vacuum Thermal-Evaporation. Front. Mater. Sci. 2016, 10, 320–327. [Google Scholar] [CrossRef]
- Biederman, H. Organic Films Prepared by Polymer Sputtering. J. Vac. Sci. Technol. A 2000, 18, 1642–1648. [Google Scholar] [CrossRef]
- Norton, M.G.; Jiang, W.; Dickinson, J.T.; Hipps, K.W. Pulsed Laser Ablation and Deposition of Fluorocarbon Polymers. Appl. Surf. Sci. 1996, 96–98, 617–620. [Google Scholar] [CrossRef]
- Blanchet, G.B.; Shah, S.I. Deposition of Polytetrafluoroethylene Films by Laser Ablation. Appl. Phys. Lett. 1993, 62, 1026–1028. [Google Scholar] [CrossRef]
- Ju, Y.; Ai, L.; Qi, X.; Song, W.; Ai, L. Review on Hydrophobic Thin Films Prepared Using Magnetron Sputtering Deposition. Materials 2023, 16, 3764. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wei, Q.; Liu, Y.; Zhang, L.; Wang, Y. Surface Functionalization of Silk Fabric by PTFE Sputter Coating. J. Mater. Sci. 2007, 42, 8025–8028. [Google Scholar] [CrossRef]
- Bodas, D.S.; Mandale, A.B.; Gangal, S. Deposition of PTFE Thin Films by RF Plasma Sputtering on Silicon Substrates. Appl. Surf. Sci. 2005, 245, 202–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.H.; Kang, E.T.; Neoh, K.G.; Huang, W.; Huan, A.C.H.; Wu, S.Y. Deposition of Fluoropolymer Films on Si(100) Surfaces by Rf Magnetron Sputtering of Poly(tetrafluoroethylene). Langmuir 2002, 18, 6373–6380. [Google Scholar] [CrossRef]
- Iwamori, S.; Hasegawa, N.; Uemura, A.; Tanabe, T.; Nishiyama, I. Friction and Adhesion Properties of Fluorocarbon Polymer Thin Films Prepared by Magnetron Sputtering. Vacuum 2009, 84, 592–596. [Google Scholar] [CrossRef]
- Yang, G.H.; Zhang, Y.; Kang, E.T.; Neoh, K.G. Deposition of Ultrathin Fluoropolymer Films on Si(100) and GaAs(100) Surfaces by RF Magnetron Sputtering of Poly(tetrafluoroethylene-co-hexafluoropropylene). J. Phys. Chem. B 2003, 107, 2672–2677. [Google Scholar] [CrossRef]
- Biederman, H.; Zeuner, M.; Zalman, J.; Bílková, P.; Slavínská, D.; Stelmasuk, V.; Boldyreva, A. Rf Magnetron Sputtering of Polytetrafluoroethylene under Various Conditions. Thin Solid Film. 2001, 392, 208–213. [Google Scholar] [CrossRef]
- Kravets, L.; Dmitriev, S.; Lizunov, N.; Satulu, V.; Mitu, B.; Dinescu, G. Properties of Poly(ethylene Terephthalate) Track Membranes with a Polymer Layer Obtained by Plasma Polymerization of Pyrrole Vapors. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 485–492. [Google Scholar] [CrossRef]
- Elinson, V.M.; Shchur, P.A.; Deshevaya, E.A.; Kravets, L.I. Antimicrobial Antiadhesive Properties of Nanostructured Fluorocarbon Films Obtained under Transient Conditions Using Two-Component Gas Mixtures. J. Phys. Conf. Ser. 2019, 1313, 012016. [Google Scholar] [CrossRef]
- Satulu, V.; Mitu, B.; Altynov, V.A.; Lizunov, N.E.; Kravets, L.; Dinescu, G. Synthesis and Characterization of Porous Composite Membranes with Hydrophilic/Hydrophobic Sides. Thin Solid Film. 2017, 630, 92–99. [Google Scholar] [CrossRef]
- Apel, P.Y.; Dmitriev, S.N. Micro- and Nanoporous Materials Produced Using Accelerated Heavy Ion Beams. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 013002. [Google Scholar] [CrossRef]
- Satulu, V.; Mitu, B.; Pandele, A.M.; Voicu, S.I.; Kravets, L.; Dinescu, G. Composite Polyethylene Terephthalate Track Membranes with Thin Teflon-Like Layers: Preparation and Surface Properties. Appl. Surf. Sci. 2019, 476, 452–459. [Google Scholar] [CrossRef]
- Satulu, V.; Pandele, A.M.; Ionica, G.-I.; Bobirică, L.; Bonciu, A.F.; Scarlatescu, A.; Bobirică, C.; Orbeci, C.; Voicu, S.I.; Mitu, B.; et al. Robust CA-GO-TiO2/PTFE Photocatalytic Membranes for the Degradation of the Azithromycin Formulation from Wastewaters. Polymers 2024, 16, 1368. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; ISBN 978-0-7923-4248-9. [Google Scholar]
- Rezaei, M.; Warsinger, D.M.; Lienhard, V.J.H.; Duke, M.C.; Matsuura, T.; Samhaber, W.M. Wetting Phenomena in Membrane Distillation: Mechanisms, Reversal, and Prevention. Water Res. 2018, 139, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Kravets, L.I.; Yarmolenko, M.A.; Rogachev, A.V.; Gainutdinov, R.V.; Altynov, V.A.; Lizunov, N.E. Formation of Hydrophobic and Superhydrophobic Coatings on Track-Etched Membrane Surfaces to Create Composite Membranes for Water Desalination. Colloid J. 2022, 84, 427–444. [Google Scholar] [CrossRef]
- Khayet, M.; Matsuura, T. Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation. Ind. Eng. Chem. Res. 2001, 40, 5710–5718. [Google Scholar] [CrossRef]
- Hubert, J.; Mertens, J.; Dufour, T.; Vandencasteele, N.; Reniers, F.; Viville, P.; Lazzaroni, R.; Raes, M.; Terryn, H. Synthesis and Texturization Processes of (Super)-Hydrophobic Fluorinated Surfaces by Atmospheric Plasma. J. Mater. Res. 2015, 30, 3177–3191. [Google Scholar] [CrossRef]
- Satulu, V.; Ionita, M.D.; Vizireanu, S.; Mitu, B.; Dinescu, G. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability. Molecules 2016, 21, 1711. [Google Scholar] [CrossRef]
- Hawlader, M.; Bahar, R.; Ng, K.C.; Wei, L.J.S. Transport Analysis of an Air Gap Membrane Distillation (AGMD) Process. Desalination Water Treat. 2012, 42, 333–346. [Google Scholar] [CrossRef]
- Khayet, M.; Mengual, J.I.; Matsuura, T. Porous Hydrophobic/Hydrophilic Composite Membranes: Application in Desalination Using Direct Contact Membrane Distillation. J. Membr. Sci. 2005, 252, 101–113. [Google Scholar] [CrossRef]
- Khayet, M.; García Payo, C. Progress on Membrane Distillation and Related Technologies. J. Membr. Sci. Res. 2016, 2, 161–162. [Google Scholar]
- Li, X.; Pan, J.; Macedonio, F.; Ursino, C.; Carraro, M.; Bonchio, M.; Drioli, E.; Figoli, A.; Wang, Z.; Cui, Z. Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers 2022, 14, 5439. [Google Scholar] [CrossRef] [PubMed]
PET-TM/PTFE-like TFC Membranes | LEPW (kPa) |
---|---|
PET-TM 250 nm/PTFE 100 nm | 282 |
PET-TM 250 nm/PTFE 200 nm | 432 |
PET-TM 450 nm/PTFE 200 nm | 217 |
PET-TM 450 nm/PTFE 300 nm | 255 |
PET-TM/PTFE-like TFC Membranes active side | ||||
---|---|---|---|---|
TFC membranes/Element | C1s | O1s | F1s | F/C Ratio |
PET-TM 250 nm/PTFE 100 nm | 24.03 | 3.07 | 72.89 | 3.03 |
PET-TM 250 nm/PTFE 200 nm | 20.59 | 3.71 | 75.71 | 3.68 |
PET-TM 450 nm/PTFE 200 nm | 28.02 | 2.65 | 69.33 | 2.47 |
PET-TM 450 nm/PTFE 300 nm | 27.21 | 2.69 | 70.10 | 2.58 |
PET-TM/PTFE-like TFC Membranes back side | ||||
TFC membranes/Element | C1s | O1s | F1s | F/C Ratio |
PET-TM 250 nm/PTFE 100 nm | 68.84 | 26.33 | 4.83 | 0.07 |
PET-TM 250 nm/PTFE 200 nm | 60.80 | 28.36 | 10.84 | 0.38 |
PET-TM 450/PTFE 200 nm | 53.27 | 21.58 | 25.16 | 0.47 |
PET-TM 450 nm/PTFE 300 nm | 32.30 | 12.70 | 54.99 | 1.70 |
PET-TM/PTFE Composite Membranes | PET-TM 250 | PET-TM 450 | ||||
---|---|---|---|---|---|---|
Thickness of the PTFE Layer, nm | ||||||
Control | 100 | 200 | Control | 200 | 300 | |
Effective pore diameter, nm | 250 | 240 | 215 | 450 | 400 | 375 |
Surface pore diameter, nm | 295 | 250 | 140 | 500 | 415 | 390 |
Porosity, % | 9.8 | 9.0 | 7.3 | 9.5 | 7.5 | 6.6 |
Maximum condensate flow, g/m2·h | 1815 | 1005 | 970 | 4950 | 1325 | 1175 |
Condensate electrical conductivity, μCm/cm | 12,800 | 293.8 | 116.9 | 18,500 | 196.2 | 165.7 |
Concentration of salt in the condensate, mg/L | 6980 | 140.5 | 55.1 | 10,250 | 92.1 | 78.5 |
Salt rejection factor (R), % | 53.45 | 99.06 | 99.63 | 31.65 | 99.35 | 99.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satulu, V.; Kravets, L.I.; Orelovich, O.L.; Mitu, B.; Dinescu, G. High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation. Polymers 2025, 17, 290. https://doi.org/10.3390/polym17030290
Satulu V, Kravets LI, Orelovich OL, Mitu B, Dinescu G. High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation. Polymers. 2025; 17(3):290. https://doi.org/10.3390/polym17030290
Chicago/Turabian StyleSatulu, Veronica, Liubov I. Kravets, Oleg L. Orelovich, Bogdana Mitu, and Gheorghe Dinescu. 2025. "High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation" Polymers 17, no. 3: 290. https://doi.org/10.3390/polym17030290
APA StyleSatulu, V., Kravets, L. I., Orelovich, O. L., Mitu, B., & Dinescu, G. (2025). High-Performance PET-TM/PTFE-like Composite Membranes for Efficient Salt Rejection via Air Gap Membrane Distillation. Polymers, 17(3), 290. https://doi.org/10.3390/polym17030290