Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Pretreatment of Aluminum Alloy Sheets for Anodizing
2.3. Anodizing Treatment of Aluminum Alloy Sheets
2.4. Insert Injection Molding of Polymer Resin on Anodized Aluminum
2.5. 3D Printing of Polymer Resin on Anodized Aluminum
2.6. 3D Characterization
3. Results and Discussion
3.1. Surface Morphology of Anodized Aluminum Oxide Layer
3.2. Analyses of Anodized Aluminum Oxide Layer
3.3. Adhesive Properties of Anodized Aluminum and Polymer Resin
3.4. 3D Printing of Polymer Resin onto Anodized Aluminum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mallick, P.K. Joining for lightweight vehicles. In Materials, Design and Manufacturing for Lightweight Vehicles; Mallick, P.K., Ed.; Elsevier: Oxford, UK, 2010; pp. 275–308. [Google Scholar]
- Fratini, L.; Ruisi, V.F. Self-piercing riveting for aluminium alloys-composites hybrid joints. Int. J. Adv. Manuf. Technol. 2009, 43, 61. [Google Scholar] [CrossRef]
- Wirth, F.; Zaeh, M.; Krutzlinger, M.; Silvanus, J. Analysis of the Bonding Behavior and Joining Mechanism during Friction Press Joining of Aluminum Alloys with Thermoplastics. Procedia CIRP 2014, 18, 215–220. [Google Scholar] [CrossRef]
- Fereiduni, E.; Movahedi, M.; Kokabi, A. Aluminum/steel joints made by an alternative friction stir spot welding process. J. Mater. Process. Technol. 2015, 224, 1–10. [Google Scholar] [CrossRef]
- Katayama, S.; Kawahito, Y. Laser Direct Joining between Al. alloy and Plastic or CFRP. J. Light Met. Weld. 2013, 51, 463–468. (In Japanese) [Google Scholar]
- Katayama, S.; Kawahito, Y. Laser Direct Joining of Metal and Plastic. Scr. Mater. 2008, 59, 1247–1250. [Google Scholar] [CrossRef]
- Fortunato, A.; Cuccolini, G.; Ascari, A.; Orazi, L.; Campana, G.; Tani, G. Hybrid metal-plastic joining by means of laser. Int. J. Mater. Form. 2010, 3, 1131–1134. [Google Scholar]
- Holtkamp, J.; Roesner, A.; Gillner, A. Advances in hybrid laser joining. Int. J. Adv. Manuf. Tech. 2010, 47, 923–930. [Google Scholar] [CrossRef]
- Wagner, G.; Balle, F.; Eifler, D. Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers. Adv. Eng. Mater. 2013, 15, 792–803. [Google Scholar] [CrossRef]
- Lionetto, F.; Balle, F.; Maffezzoli, A. Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites. J. Mater. Process. Technol. 2017, 247, 289–295. [Google Scholar] [CrossRef]
- André, N.M.; Goushegir, S.M.; Dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. Friction Spot Joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms. Compos. B 2016, 94, 197–208. [Google Scholar] [CrossRef]
- Nagatsuka, K.; Yoshida, S.; Tsuchiya, A.; Nakata, K. Direct joining of carbon-fiber–reinforced plastic to an aluminum alloy using friction lap joining. Compos. B 2015, 73, 82–88. [Google Scholar] [CrossRef]
- Taki, K.; Nakamura, S.; Takayama, T.; Nemoto, A.; Ito, H. Direct joining of a laser-ablated metal surface and polymers by precise injection molding. Microsyst. Technol. 2016, 22, 31–38. [Google Scholar] [CrossRef]
- Bishopp, J. Surface pretreatment for structural bonding. In Handbook of Adhesives and Sealants; Elsevier Science Ltd.: Oxford, UK, 2005; Volume 1, pp. 163–214. [Google Scholar]
- Critchlow, G.W.; Yendall, K.A.; Bahrani, D.; Quinn, A.; Andrews, F. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. Int. J. Adhes. Adhes. 2006, 26, 419–453. [Google Scholar] [CrossRef]
- Yendall, K.A.; Critchlow, G.W. Novel methods, incorporating pre- and post-anodising steps, for the replacement of the Bengough–Stuart chromic acid anodising process in structural bonding applications. Int. J. Adhes. Adhes. 2009, 29, 503–508. [Google Scholar] [CrossRef]
- Jeong, C.; Choi, C.H. Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Appl. Mater. Interfaces 2012, 4, 842–848. [Google Scholar] [CrossRef]
- Thormann, A.; Teuscher, N.; Pfannmöller, M.; Rothe, U.; Heilmann, A. Nanoporous Aluminum Oxide Membranes for Filtration and Biofunctionalization. Small 2007, 3, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Buyukserin, F. The use of anodized alumina molds for the fabrication of polymer nanopillar arrays as SERS substrates with tunable properties. Vib. Spectrosc. 2019, 10, 102965. [Google Scholar] [CrossRef]
- Zaraska, L.; Stępniowski, W.J.; Jaskuła, M.; Sulka, G.D. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures. Appl. Surf. Sci. 2014, 305, 650–657. [Google Scholar] [CrossRef]
- Qiu, T.; Zhang, W.; Lang, X.; Zhou, Y.; Cui, T.; Chu, P.K. Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 2009, 5, 2333–2337. [Google Scholar] [CrossRef]
- Zaraska, L.; Brudzisz, A.; Wierzbicka, E.; Sulka, G.D. The effect of electrolyte change on the morphology and degree of nanopore order of porous alumina formed by two-step anodization. Electrochim. Acta 2016, 198, 259–267. [Google Scholar] [CrossRef]
- Luksepp, T.; Kristiansen, K. The influence of water when bonding with heat-curing epoxy adhesives on sealed sulphuric acid-anodised aluminium. Int. J. Adhes. Adhes. 2009, 29, 268–279. [Google Scholar] [CrossRef]
- Johnsen, B.B.; Lapique, F.; Bjørgum, A. The durability of bonded aluminium joints: A comparison of AC and DC anodising pretreatments. Int. J. Adhes. Adhes. 2004, 24, 153–161. [Google Scholar] [CrossRef]
- Abrahami, S.T.; de Kok, J.M.; Gudla, V.C.; Ambat, R.; Terryn, H.; Mol, J.M.C. Interface strength and degradation of adhesively bonded porous aluminum oxides. NPJ Mater. Degrad. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Ye, J.; Yin, Q.; Zhou, Y. Superhydrophilicity of anodic aluminum oxide films: From “honeycomb” to “bird’s nest”. Thin Solid Films 2009, 517, 6012–6015. [Google Scholar] [CrossRef]
- Abrahami, S.T.; de Kok, J.M.; Gudla, V.C.; Marcoen, K.; Hauffman, T.; Ambat, R.; Mol, J.M.C.; Terryn, H. Fluoride-induced interfacial adhesion loss of nanoporous anodic aluminum oxide templates in aerospace structures. ACS Appl. Nano Mater. 2018, 1, 6139–6149. [Google Scholar] [CrossRef]
- Zaraska, L.; Sulka, G.D.; Jaskuła, M. Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem. 2011, 15, 2427–2436. [Google Scholar] [CrossRef]
- Choi, J.; Sauer, G.; Nielsch, K.; Wehrspohn, R.B.; Gösele, U. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem. Mater. 2003, 15, 776–779. [Google Scholar] [CrossRef]
- Kadoya, S.; Kimura, F.; Kajihara, Y. PBT–anodized aluminum alloy direct joining: Characteristic injection speed dependence of injected polymer replicated into nanostructures. Polym. Test. 2019, 75, 127–132. [Google Scholar] [CrossRef]
- Thilagashanthi, T.; Gunasekaran, K.; Satyanarayanan, K.S. Microstructural pore analysis using SEM and ImageJ on the absorption of treated coconut shell aggregate. J. Clean. Prod. 2021, 324, 129217. [Google Scholar] [CrossRef]
- ISO 4287; Geometrical Product Specifications Surface Texture Profile Method Terms, Definitions and Surface Texture Parameters. International Standard Organization: Geneva, Switzerland, 1997.
- ASTM: KS M 3705-2015; General Testing Methods for Adhesives. Korean Standards Association: Seoul, Republic of Korea, 2015.
- Li, D.; Jiang, C.; Jiang, J.; Lu, J.G. Self-assembly of periodic serrated nanostructures. Chem. Mater. 2009, 21, 253–258. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lu, W.H.; Chen, H.B.; Yen, S.C. Synergetic Effect of Aluminum and Mo/Al Etching in Phosphoric Acid-Based Etchant with Nitric Acid. J. Electrochem. Soc. 2011, 159, D103. [Google Scholar] [CrossRef]
- Araoyinbo, A.O.; Rahmat, A.; Derman, M.N.; Ahmad, K.R. Room temperature anodization of aluminum and the effect of the electrochemical cell in the formation of porous alumina films from acid and alkaline electrolytes. Adv. Mater. Lett. 2012, 3, 273–278. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H. Thick and macroporous anodic alumina membranes for self-lubricating surface composites. Appl. Surf. Sci. 2005, 249, 151–156. [Google Scholar] [CrossRef]
- Bara, M.; Niedźwiedź, M.; Skoneczny, W. Influence of anodizing parameters on surface morphology and surface-free energy of Al2O3 layers produced on EN AW-5251 alloy. Materials 2019, 12, 695. [Google Scholar] [CrossRef]
- Araoyinbo, A.; Noor, A.; Sreekantan, S.; Aziz, A. Voltage effect on electrochemical anodization of aluminum at ambient temperature. Int. J. Mech. Mater. Eng. 2010, 5, 53–58. [Google Scholar]
- Xie, Y.; Zhang, J.; Zhou, T. Large-area mechanical interlocking via nanopores: Ultra-high-strength direct bonding of polymer and metal materials. Appl. Surf. Sci. 2019, 492, 558–570. [Google Scholar] [CrossRef]
- Horiuchi, S.; Terasaki, N.; Itabashi, M. Evaluation of the properties of plastic-metal interfaces directly bonded via injection molding. Manuf. Rev. 2020, 7, 11. [Google Scholar] [CrossRef]
- Zhao, W.; Qiu, J.; Sakia, E.; Wu, H.; Zhang, G.; Feng, H.; Guo, S.; Wu, H. Enhanced bonding of polyphenylene sulfide-aluminum alloy composites using combined mild and hard anodizing techniques. Surf. Coat. Technol. 2024, 483, 15. [Google Scholar] [CrossRef]
- Pragathi, P.; Jenison, S.J.; Singh, G.R.; Vijayan, K.A.; Govindarajan, K.V.; Sarathi, R.; Velmurugan, R. A simple and efficient resin precoating treatment on anodised substrate surfaces for enhancing the adhesive bonding strength between aluminium and mild steel. Colloids Surf. A Physicochem. Eng. Asp. 2024, 697, 20. [Google Scholar] [CrossRef]
- Zhao, W.; Qiu, J.; Sakai, E.; Wu, H.; Feng, H.; Guo, S.; Wu, H. High bonding strength of polyphenylene sulfide-aluminum alloy composite structure achieved by constant current anodizing in tartaric acid. Int. J. Adhes. Adhes. 2024, 130, 103632. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, Y.; Yu, W.R.; Lee, J.U. Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing. Comps. B Eng. 2020, 189, 107912. [Google Scholar] [CrossRef]
- Couda, M.M.; Khatib, A.M.; Khalil, M.M.; Elzaher, M.A.; Abbas, M.I. Comparative study between micro-and nano-carbon with epoxy for gamma shielding applications. Carbon Lett. 2024, 34, 1129–1141. [Google Scholar]
- Zare, Y.; Munir, M.T.; Rhee, K.Y.; Park, S.J. Advanced modeling of conductivity in graphene–polymer nanocomposites: Insights into interface and tunneling characteristics. Carbon Lett. 2024, 34, 2149–2159. [Google Scholar] [CrossRef]
- Kang, D.J.; Lee, H.M.; An, K.H.; Kim, B.J. Preparation of polyimide-based activated carbon fibers and their application as the electrode materials of electric double-layer capacitors. Carbon Lett. 2024, 34, 1653–1666. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Liu, J.; Zhu, Y.; Kong, G.; Ou, Z.; Lai, D.; Zhang, S.; Che, C. Reduced graphene oxide/polyurethane composite sponge fabricated by dual-templates method for piezoresistive pressure sensor. Carbon Lett. 2024, 34, 805–814. [Google Scholar] [CrossRef]
- Shin, H.; Yang, S.M.; Park, J.S.; Yang, S.J. Effects of alignment and size of fillers on the thermal conductivity of magnetic-responsive exfoliated graphite@BN epoxy composites. Carbon Lett. 2024, 34, 1877–1885. [Google Scholar] [CrossRef]
- Liu, W.; Sun, L.; Luo, Y.; Wu, R.; Jiang, H.; Chen, Y.; Zeng, G.; Liu, Y. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating. Appl. Surf. Sci. 2013, 280, 193–200. [Google Scholar] [CrossRef]
- Mirasadi, K.; Rahmatabadi, D.; Ghasemi, I.; Khodaei, M.; Baniassadi, M.; Bodaghi, M.; Baghani, M. 3D and 4D Printing of PETG–ABS–Fe3O4 Nanocomposites with Supreme Remotely Driven Magneto-Thermal Shape-Memory Performance. Polymers 2024, 16, 1398. [Google Scholar] [CrossRef]
- Xu, D.; Yang, W.; Li, X.; Hu, Z.; Li, M.; Wang, L. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure. Appl. Surf. Sci. 2020, 515, 145996. [Google Scholar] [CrossRef]
- Gong, N.; Wang, B.; Wang, Y.; Li, X.; Lin, W.; Fu, S.; Chu, X. Effect of metal surface state on injection joining strength of aluminum-rubber composite part. J. Manuf. Process. 2020, 49, 365–372. [Google Scholar] [CrossRef]
- Lin, W.; Li, X.; Dong, W.; Zhao, Y.; Li, M.; Wang, Y. Ultrahigh bonding strength and excellent corrosion resistance of Al-TPU hybrid induced by microstructures and silane layer. J. Mater. Process. Technol. 2021, 296, 117180. [Google Scholar] [CrossRef]
- Wang, H.; Hao, X.; Yan, K.; Zhou, H.; Hua, L. Ultrasonic vibration-strengthened adhesive bonding of CFRP-to-aluminum joints. J. Mater. Process. Technol. 2018, 257, 213–226. [Google Scholar] [CrossRef]
- Lee, S.; Yashiro, H.; Kure-Chu, S. Effect of Silane Coupling Treatment on the Joining and Sealing Performance between Polymer and Anodized Aluminum Alloy. Korean J. Mater. Res. 2021, 31, 3. [Google Scholar] [CrossRef]
- Mrzljak, S.; Trautmann, M.; Wagner, F.; Walther, F. Influence of Aluminum Surface Treatment on Tensile and Fatigue Behavior of Thermoplastic-Based Hybrid Laminates. Materials 2020, 13, 3080. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zou, Q.; Xiao, T.; Jiao, J.; Du, B.; Liu, Y.; Sheng, L. Effect of Interface Pretreatment of Al Alloy on Bonding Strength of the Laser Joined Al/CFRTP Butt Joint. Micromachines 2021, 12, 179. [Google Scholar] [CrossRef]
- Chen, J.; Du, K.; Chen, X.; Li, Y.; Huang, J.; Wu, Y.; Yang, C.; Xia, X. Surface modification of materials for improved adhesion properties. Appl. Surf. Sci. 2019, 489, 392–402. [Google Scholar] [CrossRef]
- He, D.; Wang, P.; Liu, P.; Liu, X.; Chen, X.; Li, W.; Zhang, K. Anodic voltage dependence of Ti-6Al-4V substrates and hydroxyapatite coating. J. Nanosci. Nanotechnol. 2019, 19, 5700–5706. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhan, L.; Zhao, X.; Wang, X.; Chang, T. Effects of surface pre-treatment and adhesive quantity on interface characteristics of fiber metal laminates. Compos. Interfaces 2020, 27, 829–843. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, U.; Choi, S.; Jung, Y.; Lee, H.; Kim, J. Effect of plasma gas and Ar incorporation on the shear strength between carbon fiber-reinforced thermoplastic polymer and Al. Compos. Part A 2020, 138, 106041. [Google Scholar] [CrossRef]
- Sato, K.; Asoh, H.; Yamamoto, H. Effects of nanoporous structure of anodic films on adhesive strength between aluminum alloys and polyamide resin. Mater. Trans. 2021, 62, 1724–1731. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Huang, M.; Hu, X.; Qu, Z.; Lu, Y. Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy. Int. J. Adhes. Adhes. 2022, 113, 103065. [Google Scholar] [CrossRef]
- Huang, H.; Sun, M.; Wei, X.; Sakai, E.; Qiu, J. Effect of interfacial nanostructures on shear strength of Al-PPS joints fabricated via injection moulding method combined with anodising. Surf. Coat. 2021, 428, 127896. [Google Scholar] [CrossRef]
- Di Franco, F.; Fiore, V.; Miranda, R.; Badagliacco, D.; Santamaria, M.; Valenza, A. Influence of anodizing surface treatment on the aging behavior in salt-fog environment of aluminum alloy 5083 to fiber reinforced composites adhesive joints. J. Adhes. 2021, 1–20. [Google Scholar] [CrossRef]
- Shore, D.; Wilson, J.C.A.; Matthews, A.; Yerokhin, A. Adhesive bond strength of PEO coated AA6060-T6. Surf. Coat. 2021, 428, 127898. [Google Scholar] [CrossRef]
- Pereira, B.; Beilner, G.; Lepienski, C.; Souza, G.; Kuromoto, N.; Szameitat, E.; Peng, A.; Lee, J.; Claro, A.; Nugent, M. Scratch-resistant and well-adhered nanotube arrays produced via anodizing process on β-titanium alloy. Mater. Today Commun. 2021, 26, 101947. [Google Scholar] [CrossRef]
- Cheng, F.; Hu, Y.; Zhang, X.; Hu, X.; Huang, Z. Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions. Compos. Part A 2021, 146, 106427. [Google Scholar] [CrossRef]
P5 | P7 | P15 | P7/H100 | P7/H250 | P7/H500 | |
---|---|---|---|---|---|---|
RMS [μm] | 0.917 | 0.982 | 0.976 | 0.862 | 0.851 | 0.834 |
Thickness [nm] | 394.78 | 383.76 | 389.52 | 345.69 | 335.97 | 329.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.W.; Kim, D.H.; Lee, W.; Hong, J.-Y.; Jeon, Y.-P.; Lee, J.U. Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process. Polymers 2025, 17, 299. https://doi.org/10.3390/polym17030299
Ryu SW, Kim DH, Lee W, Hong J-Y, Jeon Y-P, Lee JU. Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process. Polymers. 2025; 17(3):299. https://doi.org/10.3390/polym17030299
Chicago/Turabian StyleRyu, Seung Wan, Dong Hyun Kim, Wonhwa Lee, Jin-Yong Hong, Young-Pyo Jeon, and Jea Uk Lee. 2025. "Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process" Polymers 17, no. 3: 299. https://doi.org/10.3390/polym17030299
APA StyleRyu, S. W., Kim, D. H., Lee, W., Hong, J.-Y., Jeon, Y.-P., & Lee, J. U. (2025). Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process. Polymers, 17(3), 299. https://doi.org/10.3390/polym17030299