Highly Transparent Anti-Smudge Coatings for Self-Cleaning, Controllable Liquid Transport, and Corrosion Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Coating Precursor
2.3. Preparation of the Anti-Smudge Coatings
2.4. Characterization and Measurement
3. Results and Discussion
3.1. Structure Conformation and Coating Transparency
3.2. Self-Cleaning Performance and Anti-Ink Ability of the Coatings
3.3. Controllable Liquid Transport on Coating Surface
3.4. Corrosion Resistance of the Coatings
3.5. Mechanical Robustness of the Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Liu, Y.; Elsharkawy, E.R.; El-Bahy, S.M.; Jing, D.; Wu, Z.; Ren, J.; El-Bahy, Z.M.; Guo, Z. Exploring NP-GLIDE coatings: A leap forward in the innovation of omniphobic surfaces. React. Funct. Polym. 2024, 205, 106050. [Google Scholar] [CrossRef]
- Shum, R.L.; Liu, G. Smudge-resistant antimicrobial ladder-like polysilsesquioxane coatings. Prog. Org. Coat. 2025, 198, 108868. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, H.; Yang, L.; Sheng, J.; Fu, H. Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding. ACS Appl. Mater. Interfaces 2019, 11, 14305–14312. [Google Scholar] [CrossRef]
- Zhong, X.; Zhou, M.; Wang, S.; Fu, H. Preparation of water-borne non-fluorinated anti-smudge surfaces and their applications. Prog. Org. Coat. 2020, 142, 105581. [Google Scholar] [CrossRef]
- Zhai, X.; Mo, Z.; Yan, Q.; Zhao, Y.; Wang, B.; Zhang, K. Anti-Smudge Organic Afterglow Panels. Adv. Funct. Mater. 2024, 34, 2405637. [Google Scholar] [CrossRef]
- Jarad, N.A.; Imran, H.; Imani, S.M.; Didar, T.F.; Soeymani, L. Fabrication of superamphiphobic surfaces via spray coating; a review. Adv. Mater. Technol. 2022, 7, 2101702. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Liu, J.; Hu, B.; Cao, X.; Wu, Z.; Li, B. Robust, breathable and antibacterial superamphiphobic cotton fabrics prepared by layer-by-layer dip coating. Appl. Surf. Sci. 2024, 669, 160582. [Google Scholar] [CrossRef]
- Wei, R.; Qi, Y.; Zhang, J.; Wang, Y.; Gao, N.; Lv, N.; Feng, S.; Song, W.; Fu, A.; Zhang, Q. Robust and Anti-Corrosive superamphiphobic Coatings Regulated by Self-Levelling. Surf. Interfaces 2024, 56, 105684. [Google Scholar] [CrossRef]
- Wei, J.; Li, B.; Tian, N.; Zhang, J.; Liang, W.; Zhang, J. Scalable robust superamphiphobic coatings enabled by self-similar structure, protective micro-skeleton, and adhesive for practical anti-icing of high-voltage transmission tower. Adv. Funct. Mater. 2022, 32, 2206014. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, S.; Geng, H.; Zhang, X.; Zhang, M.; Xu, F.; Lin, D.; Gao, Y.; Wang, H. Robust and multifunctional superamphiphobic coating toward effective anti-adhesion. Chem. Eng. J. 2022, 428, 131162. [Google Scholar] [CrossRef]
- Xia, Y.; Gu, W.; Shao, L.; Jiao, X.; Ji, Y.; Deng, W.; Yu, X.; Zhang, Y.; Zhang, Y. Flexibility and abrasion tolerance of superamphiphobic coatings with rigid core-shell particles. Chem. Eng. J. 2023, 476, 146746. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef]
- Yu, Z.P.; Kang, L.; Song, Y.Y.; Xue, X.L.; Liu, Y.; Zhang, Y.F. Robust superamphiphobic coating for oil repellency and other versatility prepared via one-step spraying. Surf. Interfaces 2024, 51, 104672. [Google Scholar] [CrossRef]
- Kota, A.K.; Choi, W.; Tuteja, A. Superomniphobic surfaces: Design and durability. MRS Bull. 2013, 38, 383–390. [Google Scholar] [CrossRef]
- Verho, T.; Bower, C.; Andrew, P.; Franssila, S.; Ikkala, O.; Ras, R.H.A. Mechanically durable superhydrophobic surfaces. Adv. Mater. 2011, 23, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Jahura, F.T.; Mazumder, N.U.S.; Hossain, M.T.; Kasebi, A.; Girase, A.; Ormond, R.B. Exploring the Prospects and Challenges of Fluorine-Free Firefighting Foams (F3) as Alternatives to Aqueous Film-Forming Foams (AFFF): A Review. ACS Omega 2024, 9, 37430–37444. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 2017, 5, 31–35. [Google Scholar] [CrossRef]
- Cheng, D.F.; Urata, C.; Yagihashi, M.; Hozumi, A. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew. Chem. Int. Ed. 2012, 51, 2956–2959. [Google Scholar] [CrossRef]
- Wang, L.; McCarthy, T.J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angew. Chem. Int. Ed. 2016, 55, 244–248. [Google Scholar] [CrossRef]
- Macoretta, D.; Rabnawaz, M.; Grozea, C.M.; Liu, G.; Wang, Y.; Crumblehulme, A.; Wyer, M. Clear antismudge unimolecular coatings of diblock copolymers on glass plates. ACS Appl. Mater. Interfaces 2014, 6, 21435–21445. [Google Scholar] [CrossRef]
- Wong, T.S.; Kang, S.H.; Tang, S.K.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Z.; Jiao, X.; Guo, Z.; Fu, H. Bioinspired lubricant-infused porous surfaces: A review on principle, fabrication, and applications. Surf. Interfaces 2024, 53, 105037. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, T.; Miao, X.; Lu, J.; Zhu, X.; Song, Y.; Ren, G.; Jia, Y.; Li, X. A thermal-driven self-replenishing slippery coating. Surf. Interfaces 2021, 24, 101022. [Google Scholar] [CrossRef]
- Kasapgil, E.; Erbil, H.Y.; Sakir, I.A. Multi-liquid repellent, fluorine-free, heat stable SLIPS via layer-by-layer assembly. Colloid. Surf. A 2022, 654, 130076. [Google Scholar] [CrossRef]
- Rabnawaz, M.; Liu, G. Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings. Angew. Chem. Int. Ed. 2015, 54, 6516–6520. [Google Scholar] [CrossRef]
- Huang, S.; Liu, G.; Hu, H.; Wang, J.; Zhang, K.; Buddingh, J. Water-based anti-smudge NP-GLIDE polyurethane coatings. Chem. Eng. J. 2018, 351, 210–220. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, H.; Wan, J. Solvent-free and UV-cured epoxy silicone coating with excellent wear resistance and antismudge properties. ACS Appl. Mater. Interfaces 2024, 16, 35494–35504. [Google Scholar] [CrossRef]
- Zhong, X.; Sheng, J.; Fu, H. A novel UV/sunlight-curable anti-smudge coating system for various substrates. Chem. Eng. J. 2018, 345, 659–668. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.K.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Jeong, Y.G. Multiwalled Carbon Nanotube/Polydimethylsiloxane Composite Films as High Performance Flexible Electric Heating Elements. Appl. Phys. Lett. 2014, 105, 051907. [Google Scholar] [CrossRef]
- Zhong, X.; Lv, L.; Hu, H.; Jiang, X.; Fu, H. Bio-based coatings with liquid repellency for various applications. Chem. Eng. J. 2020, 382, 123042. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. Robust liquid-repellent coatings based on polymer nanoparticles with excellent self-cleaning and antibacterial performances. J. Mater. Chem. A 2017, 5, 275–284. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, H.; Fu, H. Self-cleaning, chemically stable, reshapeable, highly conductive nanocomposites for electrical circuits and flexible electronic devices. ACS Appl. Mater. Interfaces 2018, 10, 25697–25705. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P. Physical Chemistry, 6th ed.; Freeman: New York, NY, USA, 1998. [Google Scholar]
- Hu, H.; Liu, G.; Wang, J. Clear and durable epoxy coatings that exhibit dynamic omniphobicity. Adv. Mater. Interfaces 2016, 3, 1600001. [Google Scholar] [CrossRef]
- Chen, Y.; Ao, J.; Zhang, J.; Gao, J.; Hao, L.; Jiang, R.; Zhang, Z.; Liu, Z.; Zhao, J.; Ren, L. Bioinspired superhydrophobic surfaces, inhibiting or promoting microbial contamination? Mater. Today 2023, 67, 468–494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Chen, C.; Hu, S.; Chen, Y.; Duan, D.; Liang, G.; Zhong, X. Highly Transparent Anti-Smudge Coatings for Self-Cleaning, Controllable Liquid Transport, and Corrosion Resistance. Polymers 2025, 17, 302. https://doi.org/10.3390/polym17030302
Xu H, Chen C, Hu S, Chen Y, Duan D, Liang G, Zhong X. Highly Transparent Anti-Smudge Coatings for Self-Cleaning, Controllable Liquid Transport, and Corrosion Resistance. Polymers. 2025; 17(3):302. https://doi.org/10.3390/polym17030302
Chicago/Turabian StyleXu, Hua, Chao Chen, Shunfeng Hu, Yiqi Chen, Dengle Duan, Guowei Liang, and Ximing Zhong. 2025. "Highly Transparent Anti-Smudge Coatings for Self-Cleaning, Controllable Liquid Transport, and Corrosion Resistance" Polymers 17, no. 3: 302. https://doi.org/10.3390/polym17030302
APA StyleXu, H., Chen, C., Hu, S., Chen, Y., Duan, D., Liang, G., & Zhong, X. (2025). Highly Transparent Anti-Smudge Coatings for Self-Cleaning, Controllable Liquid Transport, and Corrosion Resistance. Polymers, 17(3), 302. https://doi.org/10.3390/polym17030302