Closed-Loop Recycling of Poly(vinyl butyral) Interlayer Film via Restabilization Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fourier Transform–Infrared Spectroscopy (FT-IR)
2.2. Thermogravimetric Analysis (TGA)
2.3. Differential Scanning Calorimetry (DSC)
2.4. Melt Flow Rate (MFR)
2.5. Colorimetry
2.6. Dilute Solution Viscometry (DSV)
2.7. Pilot Production of Re-PVB Film
3. Results and Discussion
3.1. Characterization of Reference PVB Materials
3.2. Determination of PVB Degradation Mechanism
3.3. Incorporation of AOs in PVB
3.4. Determination of Optimum AO Concentration in p-PVB
3.5. Upscaling Restabilization of Re-PVB Wastes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Carrot, C.; Bendaoud, A.; Pillon, C. Handbook of Thermoplastics, 2nd ed.; Olabisi, O., Adewale, K., Eds.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4665-7722-0. [Google Scholar]
- Corroyer, E.; Brochier-Salon, M.-C.; Chaussy, D.; Wery, S.; Belgacem, M.N. Characterization of Commercial Polyvinylbutyrals. Int.J. Polym. Anal. Charact. 2013, 18, 346–357. [Google Scholar] [CrossRef]
- Nikitakos, V.; Porfyris, A.D.; Beltsios, K.; Papaspyrides, C.; Bordignon, S.; Chierotti, M.R.; Nejrotti, S.; Bonomo, M.; Barolo, C.; Piovano, A.; et al. An Integrated Characterization Strategy on Board for Recycling of Poly(Vinyl Butyral) (PVB) from Laminated Glass Wastes. Polymers 2023, 16, 10. [Google Scholar] [CrossRef]
- Kumar, P.; Khan, N.; Kumar, D. Polyvinyl butyral (PVB), versetile template for designing nanocomposite/composite materials: A review. GCTL 2016, 2, 185–194. [Google Scholar] [CrossRef]
- Nguyen, F.N.; Berg, J.C. The Effect of Vinyl Alcohol Content on Adhesion Performance in Poly(Vinyl Butyral)/Glass Systems. J. Adhes. Sci. Technol. 2004, 18, 1011–1026. [Google Scholar] [CrossRef]
- Samieian, M.A.; Cormie, D.; Smith, D.; Wholey, W.; Blackman, B.R.K.; Dear, J.P.; Hooper, P.A. On the Bonding between Glass and PVB in Laminated Glass. Eng. Fract. Mech. 2019, 214, 504–519. [Google Scholar] [CrossRef]
- Dhaliwal, A.K.; Hay, J.N. The Characterization of Polyvinyl Butyral by Thermal Analysis. Thermochim. Acta 2002, 391, 245–255. [Google Scholar] [CrossRef]
- Motlatle, A.M.; Bothloko, O.J.; Scriba, M.R.; Ojijo, V.; Ray, S.S. The Thermal Degradation Kinetics and Morphology of Poly(Vinyl Butyral) Cast Films Prepared Using Different Organic Solvents. In Proceedings of the AIP Conference, Mallorca, Spain, 26 November 2020. [Google Scholar] [CrossRef]
- Wypych, G. (Ed.) Effect of Plasticizers on Properties of Plasticized Materials. In Handbook of Plasticizers, 3rd ed.; ChemTec Publishing: Toronto, ON, Cananda, 2017; pp. 209–332. [Google Scholar] [CrossRef]
- Godwin, A.D. Plasticizers. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 533–553. ISBN 978-0-323-39040-8. [Google Scholar]
- In-Depth Industry Outlook: Polyvinyl Butyral (PVB) Market Size & Forecast. Available online: https://www.verifiedmarketresearch.com/product/polyvinyl-butyral-pvb-market (accessed on 20 November 2024).
- Cei, N.; Canesi, I.; Nejrotti, S.; Montalbano, G.; Darjazi, H.; Piovano, A.; Bonomo, M.; Fina, A.; Yecora, B.; Perez, A.; et al. A UV-Protective Textile Coating Based on Recycled Poly(Vinyl Butyral) (PVB): A New Life for a Waste Polymer. Polymers 2024, 16, 3439. [Google Scholar] [CrossRef] [PubMed]
- Use MOWITAL® Polyvinyl Butyral for YOUR Tailor-Made High Performance Ceramics (HPC). Available online: https://www.mowital.com/applications/high-performance-ceramics/ (accessed on 15 December 2024).
- Grant Agreement No 958243—SUNRISE—H2020-LOW-CARBON-CIRCULAR-INDUSTRIES-2020. Available online: https://cordis.europa.eu/project/id/958243 (accessed on 21 January 2025).
- Swain, B.; Ryang Park, J.; Yoon Shin, D.; Park, K.-S.; Hwan Hong, M.; Gi Lee, C. Recycling of Waste Automotive Laminated Glass and Valorization of Polyvinyl Butyral through Mechanochemical Separation. Environ. Res. 2015, 142, 615–623. [Google Scholar] [CrossRef]
- Tupy, M.; Mokrejs, P.; Merinska, D.; Svoboda, P.; Zvonicek, J. Windshield Recycling Focused on Effective Separation of PVB Sheet. J. Appl. Polym. Sci. 2014, 131, 39879. [Google Scholar] [CrossRef]
- Šooš, L.; Pokusová, M.; Blecha, P.; Matúš, M.; Ondruška, J.; Čačko, V.; Bábics, J. Method for Effective Utilization of Waste Glued Glasses and Modular Constructed Device. Slovakian Patent SK8786Y1, 2 June 2020. [Google Scholar]
- Šooš, Ľ.; Matúš, M.; Pokusová, M.; Čačko, V.; Bábics, J. The Recycling of Waste Laminated Glass through Decomposition Technologies. Recycling 2021, 6, 26. [Google Scholar] [CrossRef]
- Guner, B.; Bulbul, Y.E.; Dilsiz, N. Recycling of Polyvinyl Butyral from Waste Automotive Windshield and Fabrication of Their Electrospun Fibrous Materials. J. Taiwan. Inst. Chem. Eng. 2022, 132, 104136. [Google Scholar] [CrossRef]
- Sibelco and Shark Solutions Expand Partnership in Commercialising Recycled PVB. Available online: https://www.sibelco.com/en/news/sibelco-and-shark-solutions-expand-partnership-in-commercialising-recycled-pvb (accessed on 20 October 2024).
- Acevendo, F.; De Morentin Osaba, M. Polyvinyl Butyral Recycling Method. European Patent EP2308919 B1/2017, 31 May 2017. [Google Scholar]
- El-Din, N.M.S.; Sabaa, M.W. Thermal Degradation of Poly(Vinyl Butyral) Laminated Safety Glass. Polym. Degrad. Stab. 1995, 47, 283–288. [Google Scholar] [CrossRef]
- Liau, L.C.K.; Yang, T.C.K.; Viswanath, D.S. Mechanism of Degradation of Poly(Vinyl Butyral) Using Thermogravimetry/Fourier Transform Infrared Spectrometry. Polym. Eng. Sci. 1996, 36, 2589–2600. [Google Scholar] [CrossRef]
- Měřínská, D.; Tupý, M.; Kašpárková, V.; Popelková, J.; Zvoníček, J.; Pištěk, D.; Svoboda, P. Degradation of Plasticized PVB During Reprocessing by Kneading. Macromol. Symp. 2009, 286, 107–115. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Zavodchikova, A.A.; Popova, E.I.; Lazareva, O.L.; Belova, O.A.; Kryuchkov, I.A.; Bykov, E.V. Accelerated Testing of Thermo-Oxidative Degradation of Polyvinyl Butyral. Thermochim. Acta 2014, 589, 70–75. [Google Scholar] [CrossRef]
- Xu, B.; Toutanji, H.A.; Gilbert, J. Impact Resistance of Poly(Vinyl Alcohol) Fiber Reinforced High-Performance Organic Aggregate Cementitious Material. Cem. Concr. Res. 2010, 40, 347–351. [Google Scholar] [CrossRef]
- Fernández, M.D.; Fernández, M.J.; Hoces, P. Synthesis of Poly(Vinyl Butyral)s in Homogeneous Phase and Their Thermal Properties. J. Appl. Polym. Sci. 2006, 102, 5007–5017. [Google Scholar] [CrossRef]
- Liu, R.; He, B.; Chen, X. Degradation of Poly(Vinyl Butyral) and Its Stabilization by Bases. Polym. Degrad. Stab. 2008, 93, 846–853. [Google Scholar] [CrossRef]
- Xu, C.; Liang, S.; Jin, B.; Xiao, Q.; Hao, X.; Liu, Z.; Lin, N.; Sun, J.; Sui, H. Application of Multi-Channel in Situ Infrared Spectroscopy: The Case of PVB Thermal Aging. RSC Adv. 2023, 13, 28371–28381. [Google Scholar] [CrossRef]
- Hintersteiner, I.; Sternbauer, L.; Beissmann, S.; Buchberger, W.W.; Wallner, G.M. Determination of Stabilisers in Polymeric Materials Used as Encapsulants in Photovoltaic Modules. Polym. Test. 2014, 33, 172–178. [Google Scholar] [CrossRef]
- Liau, L.C.K.; Viswanath, D.S. Thermal Degradation of Poly(Vinylbutyral)/Ceramic Composites: A Kinetic Approach. Ind. Eng. Chem. Res. 1998, 37, 49–57. [Google Scholar] [CrossRef]
- Wilén, C.; Pfaendner, R. Improving Weathering Resistance of Flame-retarded Polymers. J. Appl. Polym. Sci. 2013, 129, 925–944. [Google Scholar] [CrossRef]
- Zweifel, H.; Maier, R.D.; Schiller, M. Plastics Additives Handbook, 6th ed.; Hanser Publications: Cincinnati, OH, USA, 2009; ISBN 978-3-446-40801-2. [Google Scholar]
- Pfaendner, R. Plastic Additives. In Kirk-Othmer Encyclopedia of Chemical Technology; Kirk, J.A., Othmer, D.F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–38. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Recycling of Post-Used PE Packaging ®lm Using the Restabilization Technique. Polym. Degrad. Stab. 2000, 70, 189–197. [Google Scholar] [CrossRef]
- Tsenoglou, C.J.; Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Restabilization of Recycled, CaCO3-filled Polypropylene: Assessment of Reprocessing Induced Modifications and Processing Stabilizer Effectiveness. Adv. Polym. Technol. 2002, 21, 260–267. [Google Scholar] [CrossRef]
- Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer Additives. Phys. Sci. Rev. 2017, 2, 6. [Google Scholar] [CrossRef]
- Pfaendner, R.; Herbst, H.; Hoffmann, K.; Sitek, F. Recycling and Restabilization of Polymers for High Quality Applications. An Overview. Angew. Makromol. Chem. 1995, 232, 193–227. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R.; Hoffmann, K.; Herbst, H. Closed Loop Recycling of Bottle Crates Using the Restabilization Technique. Macromol. Mater. Eng. 2003, 288, 124–136. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R.; Hoffmann, K.; Herbst, H. Mechanical Recycling of Post-Used HDPE Crates Using the Restabilization Technique. II: Influence of Artificial Weathering. J. Appl. Polym. Sci. 2000, 77, 1118–1127. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R.; Hoffmann, K.; Herbst, H. Mechanical Recycling of Postused High-Density Polyethylene Crates Using the Restabilization Technique. I. Influence of Reprocessing. J. Appl. Polym. Sci. 1999, 73, 1775–1785. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R.; Hoffmann, K.; Herbst, H. Recycled and Restabilized Hdpe Bottle Crates: Retention of Critical Properties after Heat Aging. Polym. Sci. Eng. 2001, 41, 771–781. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Closed-loop Recycling of Postused Garden Chairs Based on PP Using the Restabilization Technique. I. Evaluation of Processing Parameters. J. Appl. Polym. Sci. 2002, 86, 2472–2485. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Closed-loop Recycling of Postused PP-filled Garden Chairs Using the Restabilization Technique. III. Influence of Artificial Weathering. J. Appl. Polym. Sci. 2003, 89, 1311–1318. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Closed-loop Recycling of Postused PP-filled Garden Chairs Using the Restabilization Technique. Part 2: Material Performance during Accelerated Heat Aging. J. Appl. Polym. Sci. 2003, 88, 3033–3044. [Google Scholar] [CrossRef]
- Kouranou, D.; Galanopoulou, C.; Korres, D.M.; Tzani, A.; Detsi, A.; Vouyiouka, S. Restabilization of Post-Consumer Recycled Polypropylene With Natural Antioxidants From Spent Coffee Residue. J. Appl. Polym. Sci. 2024, e56494. [Google Scholar] [CrossRef]
- Tsenoglou, C.; Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Modeling the Role of Stabilizing Additives during Melt Recycling of High-density Polyethylene. J. Appl. Polym. Sci. 2001, 80, 2207–2217. [Google Scholar] [CrossRef]
- Pfaendner, R. Restabilization—30 Years of Research for Quality Improvement of Recycled Plastics Review. Polym. Degrad. Stab. 2022, 203, 110082. [Google Scholar] [CrossRef]
- Desloir, M.; Benoit, C.; Bendaoud, A.; Alcouffe, P.; Carrot, C. Plasticization of Poly(Vinyl Butyral) by Water: Glass Transition Temperature and Mechanical Properties. J. Appl. Polym. Sci. 2019, 136, 47230. [Google Scholar] [CrossRef]
- ASTM E2009: 2008; Standard Test Methods for Oxidation Onset Temperature of Hydrocarbons by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2008.
- Porfyris, A.D.; Vafeiadis, A.; Gkountela, C.I.; Politidis, C.; Messaritakis, G.; Orfanoudakis, E.; Pavlidou, S.; Korres, D.M.; Kyritsis, A.; Vouyiouka, S.N. Flame-Retarded and Heat-Resistant PP Compounds for Halogen-Free Low-Smoke Cable Protection Pipes (HFLS Conduits). Polymers 2024, 16, 1298. [Google Scholar] [CrossRef]
- Fischer, J.; Metzsch-Zilligen, E.; Zou, M.; Pfaendner, R. A Novel Class of High Molecular Weight Multifunctional Antioxidants for Polymers Based on Thiol-Ene Click Reaction. Polym. Degrad. Stab. 2020, 173, 109099. [Google Scholar] [CrossRef]
- ASTM D1238-10; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E313: 2020; Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Billmeyer, F.W. Methods for Estimating Intrinsic Viscosity. J. Polym. Sci. 1949, 4, 83–86. [Google Scholar] [CrossRef]
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018.
- Qian, S.; Igarashi, T.; Nitta, K. Thermal Degradation Behavior of Polypropylene in the Melt State: Molecular Weight Distribution Changes and Chain Scission Mechanism. Polym. Bull. 2011, 67, 1661–1670. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Echtermeyer, A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers 2018, 10, 1017. [Google Scholar] [CrossRef]
- Grachev, V.I.; Klimenko, I.B.; Smirnov, L.V.; Gladkikh, A.F. A Spectroscopic Study of the Kinetics of Thermal-Oxidative Degradation of Polyvinyl Butyrals (PVB). Polym. Sci. USSR 1974, 16, 367–373. [Google Scholar] [CrossRef]
- Schmidt, E. Stabilized Polyvinyl Butyral and Stabilizer for Polyvinyl Butyral. U.S. Patent US3950305/1976, 13 April 1976. [Google Scholar]
- Mei, X.; Jiao, S.; Li, X.; Li, Y.; Cheng, Y. Effect of the Antioxidants on the Stability of Poly(Vinyl Butyral) and Kinetic Analysis. J. Therm. Anal. Calorim. 2014, 116, 1345–1349. [Google Scholar] [CrossRef]
- Wypych, G. Effect of Additives on weathering. In Handbook of Material Weathering, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 591–624. [Google Scholar] [CrossRef]
- Volponi, J.E.; Mei, L.H.I.; Rosa, D.D.S. Use of Oxidation Onset Temperature Measurements for Evaluating the Oxidative Degradation of Isotatic Polypropylene. J. Environ. Polym. Degrad. 2004, 12, 11–16. [Google Scholar] [CrossRef]
- Lellig, P.; Keller, U. PVB Film with UV Protection and Low Yellow Value for Laminated Safety Glass. US Patent US9206299B2, 8 December 2015. [Google Scholar]
- Maŕin, A.P.; Tatarenko, L.A.; Shlyapnikov, Y.A. Solubility of Antioxidants in Poly(Vinyl Butyral). Polym. Degrad. Stab. 1998, 62, 507–511. [Google Scholar] [CrossRef]
- Nichols, R.T.; Sowers, R.M. Laminated Materials, Glass. In Kirk-Othmer Encyclopedia of Chemical Technology; Kirk, J.A., Othmer, D.F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; ISBN 978-0-471-48494-3. [Google Scholar]
- Saflex® Clear PVB Interlayer. Available online: https://saflex-vanceva.eastman.com/content/dam/saflex/product-pages/saflex-clear/ai-arch-4321_saflex_clear_product_bulletin.pdf (accessed on 15 December 2024).
- Everlam PVB Interlayer Product Fact Sheet. Available online: https://www.everlam.com/hubfs/Product_Fact_Sheets/EVERLAM_product%20fact%20sheet_EN.pdf?hsLang=en (accessed on 15 December 2024).
AO Formulation | Additives | Type |
---|---|---|
AO-1 | octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate | Primary-hindered phenol |
AO-2 | pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) | |
AO-3 | 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene | |
AO-4 | AO-3 + octadecyl 3-[[3-(dodecyloxy)-3-oxopropyl]thio]propionate | 1:1 combination of primary-hindered phenol and secondary thioester moieties |
AO-5 | 4-[[4,6-bis(octylsulfanyl)-1,3,5-triazin-2-yl]amino]-2,6-di-tert-butylphenol | Multifunctional AO comprising phenol and thioether moieties |
AO-6 | 2-methyl-4,6-bis[(octylthio)methyl]phenol |
Samples | T5% (°C) | Step 1 (% w/w) | Td1 (°C) | Td2 (°C) | Step 2 (% w/w) | Td3 (°C) | Residue (% w/w) |
---|---|---|---|---|---|---|---|
u-PVB | 329.1 ± 13.1 | - | 391.1 ± 0.4 | - | 99.0 ± 1.0 | 391.1 ± 0.4 | 1.0 ± 1.0 |
p-PVB | 257.6 ± 0.5 | 35.8 ± 0.2 | 314.6 ± 1.8 | - | 60.2 ± 0.7 | 396.6 ± 1.0 | 2.2 ± 0.1 |
re-PVB | 261.7 ± 4.5 | 39.4 ± 4.4 | 313.8 ± 1.9 | 341.3 ± 2.5 | 57.4 ± 4.1 | 388.7 ± 4.5 | 2.6 ± 0.1 |
Samples | Tg (°C) | MFR (g/10 min) |
---|---|---|
u-PVB | 71.3 ± 1.3 | 0.40 ± 0.02 * |
p-PVB | 16.9 ± 0.7 | 1.94 ± 0.05 ** |
re-PVB | 15.4 ± 1.1 | 2.28 ± 0.09 ** |
Sample | Plasticizer Content (%) | Specifications |
---|---|---|
Test 1B | 29.7 ± 0.7 | 60% virgin commercial grade + 40% re-PVB (no AO) |
Test 2 | 27.7 ± 1.2 | 60% virgin commercial grade + 40% re-PVB + 0.3% AO-3 |
Test 3A | 28.0 ± 0.1 | 60% virgin commercial grade + 40% re-PVB + 0.15% AO-3 |
Test 3B | 30.3 ± 0.2 | 60% virgin commercial grade + 40% re-PVB + 0.3% AO-5 |
Sample | Tensile Strength at Break (MPa) | Elongation at Break (%) |
---|---|---|
Test 1B | 30.6 ± 2.0 | 361.2 ± 17.5 |
Test 2 | 30.5 ± 7.1 | 276.8 ± 14.5 |
Test 3A | 24.8 ± 1.4 | 345.0 ± 20.3 |
Test 3B | 23.4 ± 0.7 | 336.5 ± 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitakos, V.; Porfyris, A.D.; Beltsios, K.; Pfaendner, R.; Yecora, B.; Perez, A.; Brkić, F.; Miketa, F.; Papaspyrides, C.D. Closed-Loop Recycling of Poly(vinyl butyral) Interlayer Film via Restabilization Technology. Polymers 2025, 17, 317. https://doi.org/10.3390/polym17030317
Nikitakos V, Porfyris AD, Beltsios K, Pfaendner R, Yecora B, Perez A, Brkić F, Miketa F, Papaspyrides CD. Closed-Loop Recycling of Poly(vinyl butyral) Interlayer Film via Restabilization Technology. Polymers. 2025; 17(3):317. https://doi.org/10.3390/polym17030317
Chicago/Turabian StyleNikitakos, Vasilis, Athanasios D. Porfyris, Konstantinos Beltsios, Rudolf Pfaendner, Beatriz Yecora, Angelica Perez, Filip Brkić, Filip Miketa, and Constantine D. Papaspyrides. 2025. "Closed-Loop Recycling of Poly(vinyl butyral) Interlayer Film via Restabilization Technology" Polymers 17, no. 3: 317. https://doi.org/10.3390/polym17030317
APA StyleNikitakos, V., Porfyris, A. D., Beltsios, K., Pfaendner, R., Yecora, B., Perez, A., Brkić, F., Miketa, F., & Papaspyrides, C. D. (2025). Closed-Loop Recycling of Poly(vinyl butyral) Interlayer Film via Restabilization Technology. Polymers, 17(3), 317. https://doi.org/10.3390/polym17030317