Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the ZLDH and CZLDH Powder
2.3. Preparation of the P/PVDF, ZLDH/PVDF, and CZLDH/PVDF Coatings
2.4. Characterization
2.5. Electrochemical Measurements
2.6. Optimization of the ZLDH/PVDF Coatings for Corrosion Protection of Carbon Steel
3. Results and Discussion
3.1. Structure and Morphology of ZLDH and CZLDH
3.1.1. FT-IR Spectroscopy
3.1.2. XRD
3.1.3. RAMAN
3.1.4. SEM and EDS
3.2. Characterization of ZLDH and CZLDH Coating
3.2.1. SEM
3.2.2. Water Contact Angle
3.2.3. Adhesion Test
3.3. Electrochemical Performance of the PVDF Polymer Composites
3.3.1. Corrosion Behavior Analysis Through Polarization Curves
3.3.2. Long-Term Corrosion Resistance of Coatings
3.3.3. Scratch Test
3.4. Optimum Coating
3.5. Mechanism
4. Conclusions
- SEM and EDS analysis revealed significant morphological differences. The ZLDH/PVDF coating exhibited a dense and compact structure, with well-dispersed nanofillers and minimal defects, which improved interfacial adhesion. In contrast, CZLDH/PVDF displayed micro-defects due to the rigid and less flexible calcined fillers, while P-PVDF showed visible pores and a lizard-skin texture that facilitated chloride ion diffusion;
- WCA measurements indicated that the incorporation of ZLDH slightly reduced the hydrophobicity of the PVDF coating due to the presence of hydroxyl-rich ZLDH fillers. However, the slight increase in WCA for CZLDH/PVDF resulted from reduced surface energy after calcination;
- Adhesion tests show that ZLDH/PVDF exhibited superior adhesion with no peeling or delamination on the cross-cut surface, highlighting strong interfacial bonding. Conversely, CZLDH/PVDF displayed moderate adhesion, while P/PVDF suffered significant delamination due to weak bonding with the mild steel substrate;
- Scratch tests further validated the adhesion results, with ZLDH/PVDF showing no visible damage or detachment after scratching and validated by EIS after 15 days with the highest corrosion-resistant sample. CZLDH/PVDF displayed minor peeling, while P/PVDF exhibited significant failure, underscoring the critical role of the intact ZLDH lamellar structure in enhancing mechanical stability;
- Potentiodynamic polarization analysis demonstrated that ZLDH/PVDF achieved the lowest corrosion current density (8.98 × 10⁻⁴ µA/cm2) and the most positive corrosion potential (−29.60 mV), confirming its superior corrosion resistance. CZLDH/PVDF displayed intermediate corrosion protection, while P-PVDF showed the highest corrosion rate due to its porous and defective structure;
- Long-term immersion and EIS studies revealed the sustained performance of ZLDH/PVDF over 30 days in NaCl solution. ZLDH/PVDF exhibited the highest impedance values and the absence of Warburg impedance, reflecting its exceptional barrier properties. In contrast, CZLDH/PVDF shows moderate impedance with evidence of diffusion processes;
- Optimization of coating parameters demonstrated that the ZLDH/PVDF coating achieved the best corrosion resistance under the following conditions: 4 wt.% ZLDH content, 155 °C curing temperature, and 3 h curing time. These optimized parameters resulted in the lowest corrosion current density and enhanced coating integrity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dua, S.; Arora, N.; Prakashaiah, B.G.; Saxena, R.C.; Ganguly, S.K.; Senthilkumar, T. Conjugated polymer-based composites for anti-corrosion applications. Prog. Org. Coat. 2024, 188, 108231. [Google Scholar] [CrossRef]
- Bhat, S.I.; Mobin, M.; Islam, S.; Zehra, S. Recent advances in anticorrosive coatings based on sustainable polymers: Challenges and perspectives. Surf. Coat. Technol. 2024, 480, 130596. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Q.-Y.; Zhang, J.-T.; Hu, J.-M. Electrodeposited graphene/layered double hydroxides micro/nanocontainers for both passive and active corrosion protection. npj Mater. Degrad. 2024, 8, 22. [Google Scholar] [CrossRef]
- AitAghzzaf, A.; Zarki, Y.; Rhouta, B.; Khalil, A.; Veys-Renaux, D.; Majdoub, H.; Rocca, E. Intercalation of decanoate anions (C10) in layered double hydroxide MgAl and its application as controlled-release corrosion inhibitor of steel. Surf. Coat. Technol. 2024, 489, 131055. [Google Scholar] [CrossRef]
- Cristoforetti, A.; Parola, F.; Parrino, F.; Izquierdo, J.; Souto, R.M.; Rossi, S.; Deflorian, F.; Fedel, M. Sebacate intercalated CaAl layered double hydroxide pigments for corrosion protection of low carbon steel: Anion exchange and electrochemical properties. Appl. Clay Sci. 2024, 250, 107300. [Google Scholar] [CrossRef]
- Cornet, A.J.; Homborg, A.M.; ’t Hoen-Velterop, L.; Mol, J.M.C. Post-service analysis of the degradation and protective mechanisms of chromate-based structural aircraft coatings. Prog. Org. Coat. 2024, 192, 108534. [Google Scholar] [CrossRef]
- Xu, D.; Zhuo, Z.; Xie, Z.-H.; Yong, Q.; Wu, L.; Zhong, C.-J. Preparing corrosion-resistant layered double hydroxide coating on magnesium alloy under mild condition. Corros. Sci. 2024, 236, 112229. [Google Scholar] [CrossRef]
- Roshan, S.; Jafari, R.; Momen, G. Polyurethane Nanocomposite Coatings Coupled with Titanium-Based Conversion Layers for Enhanced Anticorrosion, Icephobic Properties, and Surface Protection. Molecules 2024, 29, 3901. [Google Scholar] [CrossRef]
- Milošev, I.; Pavlovčič, T.; Tomšič, M. Molybdate and vanadate ions as corrosion inhibitors for clad aluminium alloy 2024-T3. Electrochim. Acta 2024, 504, 144893. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Kuznetsova, A.; Maltanava, H.M.; Poznyak, S.K.; Ferreira, M.G.S.; Zheludkevich, M.L. Corrosion protection of zinc by LDH conversion coatings. Corros. Sci. 2024, 229, 111889. [Google Scholar] [CrossRef]
- Geethanjali, C.V.; Elias, L.; Bijimol, B.I.; Shibli, S.M.A. Strategic enhancement of antimicrobial activity of zinc phosphate conversion coatings through effective integration of P-doped MoS2 nanoparticles for marine applications. J. Environ. Chem. Eng. 2024, 12, 114155. [Google Scholar] [CrossRef]
- An, K.; Tong, W.; Wang, Y.; Qing, Y.; Sui, Y.; Xu, Y.; Ni, C. Eco-friendly superhydrophobic coupling conversion coating with corrosion resistance on magnesium alloy. Langmuir 2023, 39, 6355–6365. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, W.; Chen, Z.; Zhang, G.; Qian, S.; Lin, Z. Comparison of the Cathodic Protection of Epoxy Resin Coating/Zinc-Rich Coatings on Defective Areas under Atmospheric and Immersion Conditions: The Secondary Activation of Zinc Particles. Coatings 2024, 14, 336. [Google Scholar] [CrossRef]
- Han, X.; Sun, W.; Wang, L.; Xu, K.; Yang, Z.; Ma, Y.; Zhao, L.; Ma, S.; Xing, W.; Liu, G. Unfolded graphene riveted on layered double hydroxide as a highly efficient enhancer for the corrosion protective performance of zinc-rich epoxy coatings. Prog. Org. Coat. 2024, 191, 108436. [Google Scholar] [CrossRef]
- Wang, A.; De Silva, K.; Jones, M.; Gao, W. Cr-Free Anticorrosive Primers for Marine Propeller Applications. Polymers 2024, 16, 408. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Wang, L.; Yang, Z.; Sun, W.; Feng, Y.; Xu, K.; Chen, X.; Ren, Y.; Liu, G. A New Understanding of Graphene Influencing the Protective Performance of Zinc-Rich Coatings. Ind. Eng. Chem. Res. 2024, 63, 7661–7672. [Google Scholar] [CrossRef]
- Li, T.; Ma, Y.; Liu, J.-K.; Liu, J.-C.; Liu, Z.-X.; Ma, Y.-S.; Liu, P.-P. In-situ construction of lamellar stacked zinc molybdate-zinc/aluminium layered double hydroxides heterojunction material with synergistic corrosion protection. Prog. Org. Coat. 2024, 189, 108294. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Du, Z.; Yin, C.; Dai, X.; Wang, D.; Zhou, Q.; Zhang, C.; Yi, Z.; Zhou, H.; et al. Active release of diatomite-MgAl-layered double hydroxide nanostructures on corrosive inhibitors to effectively suppresses corrosion of LA51 alloy. Prog. Org. Coat. 2024, 194, 108569. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Lan, D.; Zhang, Y.; Jia, Z.; Wu, G.; Yin, P. Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 2024, 20, 2305849. [Google Scholar] [CrossRef] [PubMed]
- Alazreg, A.; Tadić, V.; Egelja, A.; Savić, A.; Šaponjić, A.; Vuksanović, M.M.; Heinemann, R.J. Memory Effect of Double Oxides Compared to Simple Ion Exchange for Controlled Fluoride Ion Capture and Release. Materials 2025, 18, 162. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, G.; Wang, F.; Chen, C.; Cao, J.; Ma, X.; Yang, Z.; Zou, R. Sodium alginate synergises with copper ion deposition on LDH surface to enhance the fire resistance of waterborne epoxy coatings. Colloids Surf. A Physicochem. Eng. Asp. 2024, 701, 134906. [Google Scholar] [CrossRef]
- AlGhamdi, J.M.; Alqahtani, H.A.; Mu’azu, N.D.; Zubair, M.; Haladu, S.A.; Manzar, M.S. Revolutionizing corrosion protection in seawater using innovative layered double hydroxide/polyvinylidene fluoride LDH@ PVDF composite coatings. Arab. J. Chem. 2024, 17, 105775. [Google Scholar] [CrossRef]
- Phan, M.V.; Tran, T.K.T.; Pham, Q.N.; Do, M.H.; Nguyen, T.H.N.; Nguyen, M.T.; Phan, T.T.; To, T.X.H. Controllable synthesis of layered double hydroxide nanosheets to build organic inhibitor-loaded nanocontainers for enhanced corrosion protection of carbon steel. Nanoscale Adv. 2024, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.M.; Gabbardo, A.D.; Wypych, F.; Amico, S.C. Mechanical and flame-retardant properties of epoxy/Mg-Al LDH composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 196–202. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, W.; Wang, W.; Gao, X.; Han, P.; Ding, R. Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance. Appl. Surf. Sci. 2018, 462, 175–186. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, Z.; Wang, S.; Ye, X.; Wu, Z. A Durable PVDF/PFOTES-SiO2 Superhydrophobic Coating on AZ31B Mg Alloy with Enhanced Abrasion Resistance Performance and Anti-Corrosion Properties. Appl. Sci. 2021, 11, 11172. [Google Scholar] [CrossRef]
- Saber, O.; Tagaya, H. Preparation and intercalation reactions of nano-structural materials, Zn-Al-Ti LDH. Mater. Chem. Phys. 2008, 108, 449–455. [Google Scholar] [CrossRef]
- Daugherty, R.E.; Zumbach, M.M.; Sanders, S.F.; Golden, T.D. Design challenges in electrodepositing metal-anionic clay nanocomposites: Synthesis, characterization, and corrosion resistance of nickel-LDH nanocomposite coatings. Surf. Coat. Technol. 2018, 349, 773–782. [Google Scholar] [CrossRef]
- Anjum, M.J.; Zhao, J.M.; Asl, V.Z.; Malik, M.U.; Yasin, G.; Khan, W.Q. Green corrosion inhibitors intercalated Mg:Al layered double hydroxide coatings to protect Mg alloy. Rare Met. 2021, 40, 2254–2265. [Google Scholar] [CrossRef]
- Asghar, H.; Maurino, V. Development of Highly Photoactive Mixed Metal Oxide ( MMO ) Based on the Thermal Decomposition of ZnAl-NO 3 -LDH. Eng 2024, 5, 589–599. [Google Scholar] [CrossRef]
- Starukh, G.; Rozovik, O.; Oranska, O. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media. Nanoscale Res. Lett. 2016, 11, 228. [Google Scholar] [CrossRef]
- Ahmed, A.A.A.; Talib, Z.A.; bin Hussein, M.Z.b.; Zakaria, A. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn-Al layered double hydroxide. J. Alloys Compd. 2012, 539, 154–160. [Google Scholar] [CrossRef]
- Boyraz, T.; Türk, T.; Alp, İ. Hazardous arsenite removal from water by calcined Fe-hydrotalcite. Desalination Water Treat. 2024, 317, 100111. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Poznyak, S.K.; Rodrigues, L.M.; Raps, D.; Hack, T.; Dick, L.F.; Nunes, T.; Ferreira, M.G.S. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 2010, 52, 602–611. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Fedel, M. Effect of synthesis conditions on the controlled growth of MgAl-LDH corrosion resistance film: Structure and corrosion resistance properties. Coatings 2019, 9, 30. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Fedel, M. The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl-LDH based conversion fi lm on AA6082. Surf. Coat. Technol. 2018, 352, 166–174. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, D.; Luo, J.; Zhang, F.; Lin, C. Insight into the Fabrication of ZnAl Layered Double Hydroxides Intercalated with Organic Anions and Their Corrosion Protection of Steel Reinforced Concrete Insight into the Fabrication of ZnAl Layered Double Hydroxides Intercalated with Organic Anions and Their Corrosion Protection of Steel Reinforced Concrete. J. Electrochem. Soc. 2019, 166, C617. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Vulic, T.; Ranogajec, J.; Marinkovic-Neducin, R.; Radosavljevic-Mihajlovic, A. Thermal and photocatalytic behavior of Ti/LDH nanocomposites. J. Therm. Anal. Calorim. 2013, 111, 1155–1162. [Google Scholar] [CrossRef]
- Gomes, C.; Mir, Z.; Sampaio, R.; Bastos, A.; Tedim, J.; Maia, F.; Rocha, C.; Ferreira, M. Use of ZnAl-Layered Double Hydroxide (LDH) to Extend the Service Life of Reinforced Concrete. Materials 2020, 13, 1769. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.K.; Mohanta, B.S.; Das, N.N. Synthesis, characterization and photocatalytic activity of mixed oxides derived from ZnAlTi ternary layered double hydroxides. J. Phys. Chem. Solids 2013, 74, 1263–1270. [Google Scholar] [CrossRef]
- Cosano, D.; Esquivel, D.; Romero-Salguero, F.J.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy to assess nitrate uptake by calcined LDH phases. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125066. [Google Scholar] [CrossRef]
- Liu, A.; Ju, X.; Tian, H.; Yang, H.; Li, W. Direct synthesis of layered double hydroxides monolayer nanosheets for co-assembly of nanobrick wall hybrid film with excellent corrosion resistance. Appl. Surf. Sci. 2019, 493, 239–249. [Google Scholar] [CrossRef]
- Padmaraj, O.; Venkateswarlu, M.; Satyanarayana, N. Effect of PMMA blend and ZnAl2O4 fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries. RSC Adv. 2016, 6, 6486–6495. [Google Scholar] [CrossRef]
- Rani, K.M.; Palanisamy, P.N.; Kowshalya, V.N.; Tamilvanan, A.; Prabakaran, R.; Kim, S.C. Uncalcined Zn/Al Carbonate LDH and Its Calcined Counterpart for Treating the Wastewater Containing Anionic Congo Red Dye. Energies 2024, 17, 2698. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Qiu, B.; Chen, S.; Chen, H.; Fan, X. Chemical Engineering and Processing—Process Intensification MgAl layered double hydroxide ( LDH ) for promoting ammonia synthesis in non-thermal plasma: Role of surface oxygen vacancy. Chem. Eng. Process.—Process Intensif. 2024, 195, 109608. [Google Scholar] [CrossRef]
- Belhalfaoui, B.F.; Bessaha, H.; Benkhemkhem, K.N.; Bouraada, M.; Hijazi, A.; Azambre, B. Photocatalytic oxidation of cationic dyes in single and binary solutions in presence of Zn-Cd oxides obtained from calcined LDH. Environ. Sci. Pollut. Res. Int. 2021, 28, 56092–56104. [Google Scholar] [CrossRef] [PubMed]
- Pancrecious, J.K.; Vineetha, S.V.; Bill, U.S.; Gowd, E.B.; Rajan, T.P.D. Ni-Al polyvanadate layered double hydroxide with nanoceria decoration for enhanced corrosion protection of aluminium alloy. Appl. Clay Sci. 2021, 211, 106199. [Google Scholar] [CrossRef]
- Vo, T.G.; Tai, Y.; Chiang, C.Y. Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on bismuth vanadate photoanode. J. Catal. 2019, 370, 1–10. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, S.; Ju, X.; Yang, H.; Sun, Y.; Wang, L.; Li, W. Bioinspired layered hybrid coatings with greatly enhanced barrier effect and active corrosion protection performance. Prog. Org. Coat. 2021, 152, 106131. [Google Scholar] [CrossRef]
- Rives, V.; Ulibarri, M.A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 1999, 181, 61–120. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, Z.; Peng, Y.; Zhu, L. Environmentally friendly electrostatically driven self-assembled LDH/GO/PVDF composite membrane for water treatment. Appl. Clay Sci. 2019, 183, 105322. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Song, G.-L.; Wu, P.-P.; Huang, J.-F.; Zheng, D.-J. A protective superhydrophobic Mg–Zn–Al LDH film on Surface-Alloyed Magnesium. J. Alloys Compd. 2021, 855, 157550. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Lyu, Y.; Li, T.; Yang, H.; Liu, Y.; Liu, R.; Xie, X.; Lyu, K.; Shah, S.P. Corrosion Resistance of CeO2-GO/Epoxy Nanocomposite Coating in Simulated Seawater and Concrete Pore Solutions. Polymers 2023, 15, 2602. [Google Scholar] [CrossRef]
- Ali, A.A.; Madkour, M.; Al Sagheer, F.; Nazeer, A.A. Alumina lath-like structure-rGO–PVDF hybrid film formation with high-performance corrosion protection for 316L stainless-steel alloy. J. Mater. Res. Technol. 2021, 15, 3694–3707. [Google Scholar] [CrossRef]
- Liu, X.; Han, X.; Wang, M.; Wang, D.; Fei, G.; Chen, A.; Lai, X. Improvement of the anti-corrosion coating properties of waterborne epoxy resin with the incorporation of fluoropolymer-modified silica nanofillers. Prog. Org. Coat. 2024, 191, 108407. [Google Scholar] [CrossRef]
- Shen, X.; Wang, J.; Xin, G. Effect of the Zeta Potential on the Corrosion Resistance of Electroless Nickel and PVDF Composite Layers Using Surfactants. ACS Omega 2021, 6, 33122–33129. [Google Scholar] [CrossRef]
- Chafiq, M.; Chaouiki, A.; Suhartono, T.; Hazmatulhaq, F.; Ko, Y.G. Interface engineering of LDH-based material as efficient anti-corrosive system via synergetic performance of host, interlayers, and morphological features of nature-mimic architectures. Chem. Eng. J. 2023, 462, 142239. [Google Scholar] [CrossRef]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Sadiku, E.R.; Mokhena, T.C. Morphology, thermal stability, and flammability properties of polymer-layered double hydroxide (Ldh) nanocomposites: A review. Crystals 2020, 10, 612. [Google Scholar] [CrossRef]
- Jagtap, A.; Wagle, P.G.; Jagtiani, E.; More, A.P. Layered double hydroxides (LDHs) for coating applications. J. Coat. Technol. Res. 2022, 19, 1009–1032. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, X.; Cai, S.; Zhong, T.; Xu, J.; Luo, W.; Guan, Y. Preparation and Application of Calcined Mg/Al Layered Double Hydroxides in Organic Coatings and Chloride Removal. Int. J. Electrochem. Sci. 2022, 17, 220812. [Google Scholar] [CrossRef]
- Mojsilović, K.; Serdechnova, M.; Blawert, C.; Zheludkevich, M.L.; Stojadinović, S.; Vasilić, R. Simple incorporation and calcination of Zn-Al LDH during PEO processing in near-neutral pH solutions. Appl. Surf. Sci. 2024, 677, 161065. [Google Scholar] [CrossRef]
- Su, Y.; Qiu, S.; Yang, D.; Liu, S.; Zhao, H.; Wang, L. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J. Hazard. Mater. 2020, 391, 122215. [Google Scholar] [CrossRef] [PubMed]
- Kotobuki, M.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021, 26, 3331. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.A.; Shakoor, R.A.; Al-Qahtani, N.; Kahraman, R. Multilayered LDH/Microcapsule Smart Epoxy Coating for Corrosion Protection. ACS Omega 2023, 8, 30838–30849. [Google Scholar] [CrossRef]
Factors | 1 | 2 | 3 |
ZLDH amount (wt.%) | 2% | 4% | 6% |
Curing temperature (°C) | 135 | 155 | 175 |
Curing time (hour) | 1 | 2 | 3 |
Specimens | Ecorr (mV vs. SCE) | icorr (µA/cm2) |
---|---|---|
Bare substrate | −828 | 10.20 |
P/PVDF | −82.90 | 16.40 × |
ZLDH/PVDF | −29.60 | 8.980 × |
CZLDH/PVDF | −72.60 | 13.40 × |
Sample | Immersion Time | Rs, Ω·cm2 | CPE1 | R1, Ω·cm2 | CPE2 | R2, Ω.cm2 | ZW, S × s1/2 | Rp, Ω·cm2 | ||
---|---|---|---|---|---|---|---|---|---|---|
Y1 | a1 | Y2 | a2 | |||||||
CS | 1 h | 31.78 | 4.26 × 10−4 | 8.01 × 10−1 | 4.14 × 102 | 3.74 × 10−4 | 7.28 × 10−1 | 2.13 × 103 | 2.54 × 103 | |
1 d | 21.90 | 6.38 × 10−4 | 7.34 × 10−1 | 3.06 × 10 | 3.98 × 10−4 | 6.95 × 10−1 | 2.37 × 103 | 2.40 × 103 | ||
9 d | 26.16 | 2.41 × 10−4 | 8.58 × 10−1 | 2.73 × 102 | 4.13 × 10−4 | 6.75 × 10−1 | 8.17 × 102 | 1.09 × 103 | ||
18 d | 24.48 | 2.30 × 10−4 | 8.96 × 10−1 | 1.84 × 102 | 4.24 × 10−4 | 5.99 × 10−1 | 1.43 × 103 | 1.61 × 103 | ||
30 d | 24.12 | 2.68 × 10−4 | 8.94 × 10−1 | 1.90 × 102 | 5.25 × 10−4 | 5.69 × 10−1 | 1.49 × 103 | 1.68 × 103 | ||
P/PVDF | 1 h | 19.00 | 7.38 × 10−10 | 9.55 × 10−1 | 2.50 × 107 | 7.79 × 10−9 | 3.70 × 10−1 | 1.60 × 108 | 1.85 × 108 | |
1 d | 29.00 | 9.50 × 10−10 | 9.56 × 10−1 | 2.34 × 108 | 1.17 × 10−8 | 9.61 × 10−1 | 4.08 × 104 | 9.82 × 10−9 | 2.34 × 108 | |
9 d | 12.00 | 7.34 × 10−10 | 9.75 × 10−1 | 1.01 × 107 | 3.18 × 10−9 | 8.15 × 10−1 | 3.97 × 107 | 3.77 × 10−8 | 4.98 × 107 | |
18 d | 25.00 | 8.03 × 10−10 | 9.68 × 10−1 | 1.15 × 108 | 2.11 × 10−8 | 1.00 | 1.44 × 107 | 4.65 × 10−8 | 1.29 × 108 | |
30 d | 27.00 | 8.25 × 10−10 | 9.65 × 10−1 | 1.86 × 108 | 5.71 × 10−11 | 9.40 × 10−1 | 1.09 × 105 | 2.09 × 10−8 | 1.86 × 108 | |
ZHDL/PVDF | 1 h | 19.00 | 1.22 × 10−9 | 9.30 × 10−1 | 1.71 × 104 | 1.10 × 10−8 | 2.34 × 10−1 | 1.40 × 108 | 1.40 × 108 | |
1 d | 28.00 | 9.13 × 10−10 | 9.58 × 10−1 | 7.37 × 103 | 3.57 × 10−6 | 2.36 × 10−1 | 4.53 × 108 | 4.53 × 108 | ||
9 d | 21.00 | 7.01 × 10−10 | 9.80 × 10−1 | 1.04 × 104 | 1.95 × 10−9 | 3.51 × 10−1 | 4.86 × 108 | 4.86 × 108 | ||
18 d | 36.00 | 8.83 × 10−10 | 9.62 × 10−1 | 2.57 × 105 | 2.96 × 10−9 | 175.3 × 10−3 | 7.67 × 108 | 7.67 × 108 | ||
30 d | 27.00 | 8.55 × 10−10 | 9.63 × 10−1 | 1.93 × 104 | 1.76 × 10−9 | 2.95 × 10−1 | 8.52 × 108 | 8.52 × 108 | ||
CZHDL/PVDF | 1 h | 21.00 | 7.73 × 10−10 | 9.56 × 10−1 | 7.96 × 103 | 1.06 × 10−8 | 2.54 × 10−1 | 1.80 × 108 | 1.80 × 108 | |
1 d | 15.00 | 7.20 × 10−10 | 9.58 × 10−1 | 1.73 × 108 | 2.59 × 10−9 | 9.45 × 10−1 | 5.38 × 107 | 5.34 × 10−9 | 2.27 × 108 | |
9 d | 19.00 | 6.44 × 10−10 | 9.68 × 10−1 | 1.47 × 108 | 6.30 × 10−10 | 9.99 × 10−1 | 1.70 × 106 | 1.02 × 10−8 | 1.49 × 108 | |
18 d | 14.00 | 7.74 × 10−10 | 9.53 × 10−1 | 1.67 × 108 | 5.48 × 10−10 | 9.94 × 10−1 | 4.38 × 106 | 6.47 × 10−9 | 1.72 × 108 | |
30 d | 18.00 | 7.84 × 10−10 | 9.53 × 10−1 | 1.91 × 108 | 2.65 × 10−9 | 9.98 × 10−1 | 3.79 × 105 | 5.37 × 10−9 | 1.91 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, H.A.; AlGhamdi, J.M.; Mu’azu, N.D. Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments. Polymers 2025, 17, 331. https://doi.org/10.3390/polym17030331
Alqahtani HA, AlGhamdi JM, Mu’azu ND. Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments. Polymers. 2025; 17(3):331. https://doi.org/10.3390/polym17030331
Chicago/Turabian StyleAlqahtani, Hissah A., Jwaher M. AlGhamdi, and Nuhu Dalhat Mu’azu. 2025. "Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments" Polymers 17, no. 3: 331. https://doi.org/10.3390/polym17030331
APA StyleAlqahtani, H. A., AlGhamdi, J. M., & Mu’azu, N. D. (2025). Synergistic Effects of Zn-Rich Layered Double Hydroxides on the Corrosion Resistance of PVDF-Based Coatings in Marine Environments. Polymers, 17(3), 331. https://doi.org/10.3390/polym17030331