Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PNRL and CPNRL
2.3. Scale Accuracy of 3D-Printed Rubber Specimens
2.4. Preparation of the 3D-Printed Tensile Model and Film Using the Casting Method Based on CPNRL-73
2.5. Printing of Complex Rubber Structure Based on CPNRL-73 Ink
2.6. Characterization
3. Results and Discussion
3.1. Colloid Properties of PNRL and CPNRL
3.2. Rheological Properties of CPNRL
3.3. The Stability of Line Printing, the Stacking of CPNRL Ink, and the Analysis of Scale Accuracy
3.4. Mechanical Properties
3.5. The 3D Structures Fabricated Using CPNRL-73 Ink
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeong, G.; Park, C.H.; Kim, B.-Y.; Kim, J.; Park, S.-D.; Yang, H.; Lee, W.S. Photocurable Elastomer Composites with SiO2-Mediated Cross-Links for Mechanically Durable 3D Printing Materials. ACS Appl. Polym. Mater. 2020, 2, 5228–5237. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed]
- Nadgorny, M.; Ameli, A. Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl. Mater. Interfaces 2018, 10, 17489–17507. [Google Scholar] [CrossRef]
- Farahani, R.D.; Chizari, K.; Therriault, D. Three-dimensional printing of freeform helical microstructures: A review. Nanoscale 2014, 6, 10470–10485. [Google Scholar] [CrossRef]
- Bean, R.H.; Rau, D.A.; Williams, C.B.; Long, T.E. Rheology guiding the design and printability of aqueous colloidal composites for additive manufacturing. J. Vinyl Addit. Technol. 2023, 29, 607–616. [Google Scholar] [CrossRef]
- Chaturvedi, I.; Jandyal, A.; Wazir, I.; Raina, A.; Ul Haq, M.I. Biomimetics and 3D printing—Opportunities for design applications. Sens. Int. 2022, 3, 100191. [Google Scholar] [CrossRef]
- Hisham, M.; Dileep, D.; Jacob, L.; Butt, H. Additive manufacturing of carbon nanocomposites for structural applications. J. Mater. Res. Technol. 2024, 28, 4674–4693. [Google Scholar] [CrossRef]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Fu, J.; He, Y. A Review of 3D Printing Technologies for Soft Polymer Materials. Adv. Funct. Mater. 2020, 30, 2000187. [Google Scholar] [CrossRef]
- Dasgupta, A.; Dutta, P. Printability of elastomer as a 3D printing material for additive manufacturing. J. Rubber Res. 2024, 27, 137–157. [Google Scholar] [CrossRef]
- Li Na, S.; Abdul Kariem, A. Elastomers and Their Potential as Matrices in Polymer Electrolytes. In Elastomers; Nevin, C., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Whba, R.; Su’ait, M.S.; Whba, F.; Sahinbay, S.; Altin, S.; Ahmad, A. Intrinsic challenges and strategic approaches for enhancing the potential of natural rubber and its derivatives: A review. Int. J. Biol. Macromol. 2024, 276, 133796. [Google Scholar] [CrossRef]
- Alkadi, F.; Lee, J.; Yeo, J.-S.; Hwang, S.-H.; Choi, J.-W. 3D Printing of Ground Tire Rubber Composites. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 211–222. [Google Scholar] [CrossRef]
- Alkadi, F.; Lee, K.-C.; Bashiri, A.H.; Choi, J.-W. Conformal additive manufacturing using a direct-print process. Addit. Manuf. 2020, 32, 100975. [Google Scholar] [CrossRef]
- Adhikari, B.; De, D.; Maiti, S. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [Google Scholar] [CrossRef]
- Fang, Y.; Zhan, M.; Wang, Y. The status of recycling of waste rubber. Mater. Des. 2001, 22, 123–128. [Google Scholar] [CrossRef]
- De, D.; Das, A.; De, D.; Dey, B.; Debnath, S.C.; Roy, B.C. Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. Eur. Polym. J. 2006, 42, 917–927. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, M.H. Recycling of waste tyre rubber into oil absorbent. Waste Manag. 2009, 29, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Sunthonpagasit, N.; Duffey, M.R. Scrap tires to crumb rubber: Feasibility analysis for processing facilities. Resour. Conserv. Recycl. 2004, 40, 281–299. [Google Scholar] [CrossRef]
- Fiksel, J.; Bakshi, B.R.; Baral, A.; Guerra, E.; DeQuervain, B. Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technol. Environ. Policy 2011, 13, 19–35. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Hu, X.; Wu, W.; Wang, Z.; Wang, R.; Zhang, L. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing. Polymers 2017, 9, 694. [Google Scholar] [CrossRef]
- Hu, X.; Kang, H.; Li, Y.; Geng, Y.; Wang, R.; Zhang, L. Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials. Polymer 2017, 108, 11–20. [Google Scholar] [CrossRef]
- Wissamitanan, T.; Dechwayukul, C.; Kalkornsurapranee, E.; Thongruang, W. Proper Blends of Biodegradable Polycaprolactone and Natural Rubber for 3D Printing. Polymers 2020, 12, 2416. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, Z.; Feller, K.D.; Schulz, M.D.; Long, T.E.; Williams, C.B. Vat photopolymerization of silica reinforced styrene-butadiene rubber elastomeric nanocomposites. Appl. Mater. Today 2024, 40, 102370. [Google Scholar] [CrossRef]
- Wen, J.; Bean, R.H.; Nayyar, G.; Feller, K.; Scott, P.J.; Williams, C.B.; Long, T.E. Vat Photopolymerization of Synthetic Isoprene Rubber Latexes. ACS Appl. Polym. Mater. 2024, 6, 2169–2176. [Google Scholar] [CrossRef]
- Scott, P.J.; Meenakshisundaram, V.; Hegde, M.; Kasprzak, C.R.; Winkler, C.R.; Feller, K.D.; Williams, C.B.; Long, T.E. 3D Printing Latex: A Route to Complex Geometries of High Molecular Weight Polymers. ACS Appl. Mater. Interfaces 2020, 12, 10918–10928. [Google Scholar] [CrossRef]
- Kasprzak, C.; Brown, J.R.; Feller, K.; Scott, P.J.; Meenakshisundaram, V.; Williams, C.; Long, T. Vat Photopolymerization of Reinforced Styrene–Butadiene Elastomers: A Degradable Scaffold Approach. ACS Appl. Mater. Interfaces 2022, 14, 18965–18973. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, J.-W. Rubber ink formulations with high solid content for direct-ink write process. Addit. Manuf. 2021, 44, 102023. [Google Scholar] [CrossRef]
- Chansoda, K.; Suvanjumrat, C.; Wiroonpochit, P.; Kaewprakob, T.; Chookaew, W. Support medium development for 3D printing natural rubber latex via direct ink writing in the support bath technique. Clean. Mater. 2024, 13, 100257. [Google Scholar] [CrossRef]
- Banks, J.D.; Emami, A. Influence of filler concentration and type on rheological and mechanical properties of liquid isoprene rubber for high-strength parts via material extrusion. Addit. Manuf. 2023, 78, 103851. [Google Scholar] [CrossRef]
- GB/T 18011-2008; Natural Rubber Latex Concentrate−Preparation of Dry Films. China Standards Press: Beijing, China, 2008.
- ISO 498:1992; Natural Rubber Latex Concentrate−Preparation of Dry Films. ISO: Geneva, Switzerland, 1992.
- GB/T 528-2009; Rubber, Vulcanized or Thermoplastic−Determination of Tensile Stress−Strain Properties. China Standards Press: Beijing, China, 2009.
- Yusof, N.H.; Singh, M.; Mohd Rasdi, F.R.; Tan, K.S. Properties of concentrated skim rubber latex using membrane separation process and its comparison with other natural rubber latexes. J. Rubber Res. 2023, 26, 169–177. [Google Scholar] [CrossRef]
- Huang, S.; Luo, Z.; Zhang, J.; Kong, N.; Li, J.; Zhao, P.; Wu, J.; Tan, S.; Tao, J. An eco-friendly, high-yield and scalable method for processing concentrated natural rubber latex with superabsorbent polymer beads. Chem. Eng. J. 2024, 502, 158013. [Google Scholar] [CrossRef]
- Neumann, T.V.; Dickey, M.D. Liquid Metal Direct Write and 3D Printing: A Review. Adv. Mater. Technol. 2020, 5, 2000070. [Google Scholar] [CrossRef]
- Smay, J.E.; Cesarano, J.; Lewis, J.A. Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Langmuir 2002, 18, 5429–5437. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef] [PubMed]
- Kavalli, T.; Wolf, R.; Lalevée, J. Ultrafast Epoxy-Anhydride Photopolyaddition Reaction. Macromol. Chem. Phys. 2020, 221, 2000236. [Google Scholar] [CrossRef]
- M’Barki, A.; Bocquet, L.; Stevenson, A. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Sci. Rep. 2017, 7, 6017. [Google Scholar] [CrossRef]
- Maguire, A.; Pottackal, N.; Saadi, M.A.S.R.; Rahman, M.M.; Ajayan, P.M. Additive manufacturing of polymer-based structures by extrusion technologies. Oxf. Open Mater. Sci. 2021, 1, itaa004. [Google Scholar] [CrossRef]
- Shuai, K.; Zhang, K.; Yao, S.; Ni, Z.; Shi, D.; Miao, J.-T.; Chen, M. 3D Printing of Branched Polyurethane with Tough Mechanical Properties for Stretchable Sensors. Adv. Eng. Mater. 2024, 26, 2301103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, J.; Luo, Z.; Kong, N.; Zhao, X.; Ji, X.; Li, J.; Huang, S.; Zhao, P.; Li, S.; et al. Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing. Polymers 2025, 17, 351. https://doi.org/10.3390/polym17030351
Liu L, Zhang J, Luo Z, Kong N, Zhao X, Ji X, Li J, Huang S, Zhao P, Li S, et al. Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing. Polymers. 2025; 17(3):351. https://doi.org/10.3390/polym17030351
Chicago/Turabian StyleLiu, Lin, Jizhen Zhang, Zirong Luo, Na Kong, Xu Zhao, Xu Ji, Jihua Li, Shenbo Huang, Pengfei Zhao, Shuang Li, and et al. 2025. "Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing" Polymers 17, no. 3: 351. https://doi.org/10.3390/polym17030351
APA StyleLiu, L., Zhang, J., Luo, Z., Kong, N., Zhao, X., Ji, X., Li, J., Huang, S., Zhao, P., Li, S., Shao, Y., & Tao, J. (2025). Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing. Polymers, 17(3), 351. https://doi.org/10.3390/polym17030351