Tuning the Optical Properties of Electrospun Poly(methyl methacrylate) Nanofibres via Montmorillonite and Magnetite Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterisation
3. Results and Discussion
3.1. Morphology
3.2. XRD
3.3. FTIR
3.4. Optical Properties
3.5. Ellipsometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousef, E.; Ali, M.K.M.; Allam, N.K. Tuning the Optical Properties and Hydrophobicity of BiVO4/PVC/PVP Composites as Potential Candidates for Optoelectronics Applications. Opt. Mater. 2024, 150, 115193. [Google Scholar] [CrossRef]
- Al-Amri, A.M. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications. Polymers 2023, 15, 3234. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, D.; Jadoun, S.; Arif, R.; Jabin, S. Functionalization of Conducting Polymers and Their Applications in Optoelectronics. Polym.-Plast. Technol. Mater. 2021, 60, 465–487. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A Comparative Analysis of the Basic Properties and Applications of Poly (Vinylidene Fluoride) (PVDF) and Poly (Methyl Methacrylate) (PMMA). Polym. Bull. 2022, 79, 5635–5665. [Google Scholar] [CrossRef]
- Palanichamy, K.; Anandan, M.; Sridhar, J.; Natarajan, V.; Dhandapani, A. PVA and PMMA Nano-Composites: A Review on Strategies, Applications and Future Prospects. Mater. Res. Express 2023, 10, 022002. [Google Scholar] [CrossRef]
- Ramanathan, S.; Lin, Y.-C.; Thirumurugan, S.; Hu, C.-C.; Duann, Y.-F.; Chung, R.-J. Poly(Methyl Methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers 2024, 16, 367. [Google Scholar] [CrossRef]
- Clavian, L.M.; Rajesh Kumar, P.C.; Anil Kumar, K.V.; Narayana Rao, D.; Shihab, N.K.; Sanjeev, G. Nonlinear Properties of PMMA Composite Thin Films. Sci. Technol.-Recent Updates Future Prospect. 2024, 5, 70–77. [Google Scholar] [CrossRef]
- Shruthi, K.N.; Ramaraja Varma, V.; Kumar, M.; Sushma; Sanjeev, G. Structural and Optical Properties of PMMA-MgO Nanocomposite Film. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1300, 012020. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Kołbuk, D.; Gradys, A.; Sajkiewicz, P. Development of Poly(Methyl Methacrylate)/Nano-Hydroxyapatite (PMMA/NHA) Nanofibers for Tissue Engineering Regeneration Using an Electrospinning Technique. Polymers 2024, 16, 531. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, W.; Wang, X. Optical Properties of CsPbBr3 Quantum Dots in PMMA Matrix. In Proceedings of the International Conference on Optoelectronic Information and Functional Materials (OIFM 2023), Guangzhou, China, 14–16 April 2023; Fu, Y., Prakash, K.B., Eds.; SPIE: San Francisco, CA, USA, 2023; Volume 12781, p. 1278118. [Google Scholar]
- Blachowicz, T.; Ehrmann, A. Optical Properties of Electrospun Nanofiber Mats. Membranes 2023, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Al Shafouri, M.; Ahmed, N.M.; Hassan, Z.; Almessiere, M.A. Structural and Optical Properties of Nanofibers Prepared with Electrospinning by Using PMMA Integrated with Curcuminoids to Produce White LED. Fibers Polym. 2020, 21, 1733–1742. [Google Scholar] [CrossRef]
- Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun Fiber-Based Flexible Electronics: Fiber Fabrication, Device Platform, Functionality Integration and Applications. Prog. Mater. Sci. 2023, 137, 101139. [Google Scholar] [CrossRef]
- Borojeni, I.A.; Gajewski, G.; Riahi, R.A. Application of Electrospun Nonwoven Fibers in Air Filters. Fibers 2022, 10, 15. [Google Scholar] [CrossRef]
- Zulkefle, M.A.; Rahman, R.A.; Abdullah, W.F.H.; Zulkifli, Z.; Herman, S.H. PVA Nanofibers Embedded with Different Concentration of ZnO Prepared by Electrospinning Method. Solid State Phenom. 2023, 344, 61–66. [Google Scholar] [CrossRef]
- Garg, K.; Bowlin, G.L. Electrospinning Jets and Nanofibrous Structures. Biomicrofluidics 2011, 5, 013403. [Google Scholar] [CrossRef]
- Khan, W.S.; Asmatulu, R.; Ceylan, M.; Jabbarnia, A. Recent Progress on Conventional and Non-Conventional Electrospinning Processes. Fibers Polym. 2013, 14, 1235–1247. [Google Scholar] [CrossRef]
- Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Khafagy, R.M.; Hussien, M.S.A.; Sakr, G.B.; Ibrahim, M.A.; Yahia, I.S.; Zahran, H.Y. Enhancing the Structural, Optical, Electrical, Properties and Photocatalytic Applications of ZnO/PMMA Nanocomposite Membranes: Towards Multifunctional Membranes. J. Mater. Sci. Mater. Electron. 2022, 33, 1977–2002. [Google Scholar] [CrossRef]
- Hazim, A.; Abduljalil, H.M.; Hashim, A. Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 851–868. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 10288. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Edo, G.I.; Ndudi, W.; Ali, A.B.M.; Yousif, E.; Zainulabdeen, K.; Onyibe, P.N.; Akpoghelie, P.O.; Ekokotu, H.A.; Isoje, E.F.; Igbuku, U.A.; et al. An Updated Review on the Modifications, Recycling, Polymerization, and Applications of Polymethyl Methacrylate (PMMA). J. Mater. Sci. 2024, 59, 20496–20539. [Google Scholar] [CrossRef]
- Kalarikkal, N.; Applications, S.T.T. Synthesis and Multifunctional Applications of Polymethyl Methacrylate-Based Nanocomposites: A Review; Apple Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Salabat, A.; Mirhoseini, B.; Mirhoseini, F. Ionic Liquid Based Surfactant-Free Microemulsion as a New Protocol for Preparation of Visible Light Active Poly(Methyl Methacrylate)/TiO2 Nanocomposite. Sci. Rep. 2024, 14, 15676. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Mirza, A.U.; Mondal, A.H.; Mukhopadhyay, K.; Nishat, N. Functionalization of PMMA/TiO2 Nanocomposites: Synthesis, Characterization and Their Antioxidant and Antibacterial Evaluation. J. Appl. Polym. Sci. 2022, 139, 51749. [Google Scholar] [CrossRef]
- Joshi, N.C.; Kumar, N. Synthesis, Characterisation and Adsorption Applications of PMMA/ZnO-Based Nanocomposite Material. Nanotechnol. Environ. Eng. 2022, 7, 425–436. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, S.I.; Ahmedi, S.; Yadav, P.; Manzoor, N.; Parwaz, M.; Khan, Z.H. Structural, Optical and Antifungal Properties of the PMMA-ZnO Nanocomposites: Potential Applications in Odontology. Mater. Chem. Phys. 2023, 309, 128382. [Google Scholar] [CrossRef]
- Mohammed Ali, A.N.; Ali, N.A.; Hussein, S.I.; Hakamy, A.; Raffah, B.; Alofi, A.S.; Abd-Elnaiem, A.M. Nanoarchitectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability. J. Inorg. Organomet. Polym. Mater. 2023, 33, 694–706. [Google Scholar] [CrossRef]
- Ara, L.; Shah, L.A.; Ye, D.; Khattak, N.S. Silver Nanoparticles Doped Polymethylmethacrylate [Ag/PMMA] Nanocomposite as Smart Material for Non-Enzymatic Glucose Sensor. J. Dispers. Sci. Technol. 2024, 45, 1120–1128. [Google Scholar] [CrossRef]
- Riswana Barveen, N.; Wang, T.J.; Chang, Y.H. Photochemical Synthesis of Au Nanostars on PMMA Films by Ethanol Action as Flexible SERS Substrates for In-Situ Detection of Antibiotics on Curved Surfaces. Chem. Eng. J. 2022, 431, 134240. [Google Scholar] [CrossRef]
- Sulaman, M.; Sulaman, M.; Song, Y.; Yang, S.; Yang, S.; Saleem, M.I.; Li, M.; Perumal Veeramalai, C.; Zhi, R.; Jiang, Y.; et al. Interlayer of PMMA Doped with Au Nanoparticles for High-Performance Tandem Photodetectors: A Solution to Suppress Dark Current and Maintain High Photocurrent. ACS Appl. Mater. Interfaces 2020, 12, 26153–26160. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, B.; Bednarski, H.; Jarka, P.; Janeczek, H.; Godzierz, M.; Tański, T. Thermal and Optical Properties of PMMA Films Reinforced with Nb2O5 Nanoparticles. Sci. Rep. 2021, 11, 22531. [Google Scholar] [CrossRef] [PubMed]
- Asgharzadeh Shirazi, H.; Ayatollahi, M.; Navidbakhsh, M.; Asnafi, A. New Insights into the Role of Al2O3 Nano-Supplements in Mechanical Performance of PMMA and PMMA/HA Bone Cements Using Nanoindentation and Nanoscratch Measurements. Mater. Technol. 2021, 36, 212–220. [Google Scholar] [CrossRef]
- Fouad, R.A.; Ibrahim, A.A.A.; El-Sayed Seleman, M.M.; Ataya, S.; Habba, M.I.A. Mechanical Properties and Wear Performance of Denture Base Polymethyl Methacrylate Reinforced with Nano Al2O3. J. Thermoplast. Compos. Mater. 2024. [Google Scholar] [CrossRef]
- Kathalingam, A.; Vikraman, D.; Marimuthu, K.P.; Karuppasamy, K.; Lee, H.; Maiyalagan, T.; Kim, H.S. Characterization and Application of Flexible, Highly Conductive Freestanding Films of SWCNT and PMMA Nanocomposite Prepared by Facile Solution Method. Surf. Interfaces 2023, 40, 103161. [Google Scholar] [CrossRef]
- Shahkar, L.; Malek Khachatourian, A.; Nemati, A. Fabrication and Characterization of PMMA Denture Base Nanocomposite Reinforced with Hydroxyapatite and Multi-Walled Carbon Nanotubes. Diam. Relat. Mater. 2024, 147, 111377. [Google Scholar] [CrossRef]
- Krishna Prasad, S.; Baral, M.; Murali, A.; Jaisankar, S.N. Carbon Nanotube Reinforced Polymer-Stabilized Liquid Crystal Device: Lowered and Thermally Invariant Threshold with Accelerated Dynamics. ACS Appl. Mater. Interfaces 2017, 9, 26622–26629. [Google Scholar] [CrossRef]
- Muhammed, M.I.; Yahia, I.S.; Farid, A.S. Synthesis and Characterization G-C3N4-Doped PMMA Polymeric Nanocomposites Films for Electronic and Optoelectronic Applications. J. Appl. Polym. Sci. 2022, 139, e53064. [Google Scholar] [CrossRef]
- Anwar, N.; Ishtiaq, M.; Shakoor, A.; Niaz, N.A.; Rizvi, T.Z.; Qasim, M.; Irfan, M.; Mahmood, A. Dielectric Properties of Polymer/Clay Nanocomposites. Polym. Polym. Compos. 2021, 29, 807–813. [Google Scholar] [CrossRef]
- Mohan, C.; Kumari, N.; Dixit, S. Effect of Various Types of Clay Minerals on Mechanical and Thermal Properties of PMMA Polymer Composite Films. MRS Adv. 2022, 7, 933–938. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Santilli, C.V.; Briois, V.; Pulcinelli, S.H. Relevance of the Iron Distribution in Natural Smectite Clays for the Thermal Stability of PMMA-Clay Nanocomposites. ACS Omega 2024, 9, 36579–36588. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Bharatiya, D.; Parhi, B.; Pradhan, L.; Jena, B.K.; Swain, S.K. Effect of Clay on TiO2 Embedded PMMA Nanocomposite for High-Performance Energy Storage Application. J. Energy Storage 2024, 82, 110586. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Grumezescu, A.M. Magnetite Nanoparticles: Synthesis Methods—A Comparative Review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef] [PubMed]
- García-García, G.; Caro, C.; Fernández-Álvarez, F.; García-Martín, M.L.; Arias, J.L. Multi-Stimuli-Responsive Chitosan-Functionalized Magnetite/Poly(ε-Caprolactone) Nanoparticles as Theranostic Platforms for Combined Tumor Magnetic Resonance Imaging and Chemotherapy. Nanomedicine 2023, 52, 102695. [Google Scholar] [CrossRef]
- Elaoud, A.; Mechi, A.; Tlili, H.; Ferhi, M.; Hassen, H. Ben Green Synthesis and Characterization of Magnetite Na-noparticles Using Eucalyptus Globulus Leaves for Water Treatment and Agronomic Valorization. Environ. Monit. Assess. 2024, 196, 786. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Fiaz, S.; Aslam, S.; Chung, S.; Ditta, A.; Irshad, M.A.; Al-Mohaimeed, A.M.; Iqbal, R.; Al-onazi, W.A.; Rizwan, M.; et al. Green Synthesis of Magnetite Iron Oxide Nanoparticles Using Azadirachta Indica Leaf Extract Loaded on Reduced Graphene Oxide and Degradation of Methylene Blue. Sci. Rep. 2024, 14, 18172. [Google Scholar] [CrossRef]
- Ammar, L.B.; Fakhfakh, S. Optical and Dielectric Properties of Polypropylene/Montmorillonite Nanocomposites. Funct. Compos. Struct. 2020, 2, 045003. [Google Scholar] [CrossRef]
- Terchi, S.; Hamrit, S.; Ladjal, N.; Bachari, K.; Ben Rhaiem, H. Synthesize of Exfoliated Poly-Methylmethacrylate/Organomontmorillonite Nanocomposites by in Situ Polymerization: Structural Study, Thermal Properties and Application for Removal of Azo Dye Pollutant. J. Therm. Anal. Calorim. 2024, 149, 2161–2177. [Google Scholar] [CrossRef]
- Bangera, M.K.; Kotian, R.; Natarajan, S.; Somasundaram, J.; Mangalath, D.L. Effects of Graphene Nanoplatelets and Montmorillonite Nanoclay Reinforcement on Dental Polymethyl Methacrylate. Polym. Compos. 2022, 43, 3626–3638. [Google Scholar] [CrossRef]
- Abutalib, M.M.; Rajeh, A. Influence of Fe3O4 Nanoparticles on the Optical, Magnetic and Electrical Properties of PMMA/PEO Composites: Combined FT-IR/DFT for Electrochemical Applications. J. Organomet. Chem. 2020, 920, 121348. [Google Scholar] [CrossRef]
- Ansari, S.A.; Mohapatra, P.K.; Manchanda, V.K. Cation Transport across Plasticized Polymeric Membranes Containing N,N,N′,N′-Tetraoctyl-3-Oxapentanediamide(TODGA) as the Carrier. Desalination 2010, 262, 196–201. [Google Scholar] [CrossRef]
- Shankar, U.; Kumar, A.; Chaurasia, S.K.; Kumar, P.; Latif, F.A.; Yahya, M.Z.A. Structural, Optical, and Magnetic Properties of PMMA-Magnetite (Fe3O4) Composites: Role of Magneto-Conducting Filler Particles. J. Electron. Mater. 2023, 52, 4375–4387. [Google Scholar] [CrossRef]
- Zhang, C.C.; Li, X.; Yang, Y.; Wang, C. Polymethylmethacrylate/Fe3O4 Composite Nanofiber Membranes with Ultra-Low Dielectric Permittivity. Appl. Phys. A Mater. Sci. Process 2009, 97, 281–285. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.H.; Hsieh, A.J.; Rutledge, G.C. Effect of Tethering Chemistry of Cationic Surfactants on Clay Exfoliation, Electrospinning and Diameter of PMMA/Clay Nanocomposite Fibers. Polymer 2010, 51, 6295–6302. [Google Scholar] [CrossRef]
- Tsekpo, Y.M.; Appiah, A.N.S.; Damoah, L.N.W.; Amusah, D.; Annan, E. Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Media. Adsorpt. Sci. Technol. 2023, 2023, 5683415. [Google Scholar] [CrossRef]
- Asimeng, B.O.; Nyankson, E.; Efavi, J.K.; Nii Amarkai, A.; Manu, G.P.; Tiburu, E. Characterization and Inhibitory Effects of Magnetic Iron Oxide Nanoparticles Synthesized from Plant Extracts on HeLa Cells. Int. J. Biomater. 2020, 2020, 2630735. [Google Scholar] [CrossRef]
- Tański, T.; Matysiak, W.; Krzemiński, Ł.; Jarka, P.; Gołombek, K. Optical Properties of Thin Fibrous PVP/SiO2 Composite Mats Prepared via the Sol-Gel and Electrospinning Methods. Appl. Surf. Sci. 2017, 424, 184–189. [Google Scholar] [CrossRef]
- Tański, T.; Matysiak, W.; Markovičová, L.; Florek-Szotowicz, N.; Snopiński, P.; Wiśniowski, M. Analysis of the Morphology and Properties of PAN/Bi2O3 Composite Nanomaterials Produced by Electrospraying Method. J. Achiev. Mater. Manuf. Eng. 2015, 73, 176–184. [Google Scholar]
- Tański, T.; Matysiak, W.; Hajduk, B. Manufacturing and Investigation of Physical Properties of Polyacrylonitrile Nanofibre Composites with SiO2, TiO2, and Bi2O3 Nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 1141–1155. [Google Scholar] [CrossRef]
- Zaborowska, M.; Smok, W.; Tański, T. Electrospun Niobium Oxide 1D Nanostructures and Their Applications in Textile Industry Wastewater Treatment. Bull. Pol. Acad. Sci. Tech. Sci. 2023, 71, e144941. [Google Scholar] [CrossRef]
- Smok, W.; Zaborowska, M.; Tański, T.; Radoń, A. Novel In2O3/SnO2 Heterojunction 1D Nanostructure Photocatalyst for MB Degradation. Opt. Mater. 2023, 139, 113757. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O. Synthesis of Hybrid Amorphous/Crystalline SnO2 1D Nanostructures: Investigation of Morphology, Structure and Optical Properties. Sci. Rep. 2020, 10, 14802. [Google Scholar] [CrossRef] [PubMed]
- Huff, W.D.; Whiteman, J.A.; Curtis, C.D. Investigation of a K-Bentonite by X-Ray Powder Diffraction and Analytical Transmission Electron Microscopy. Clays Clay Miner. 1988, 36, 83–93. [Google Scholar] [CrossRef]
- Dellisanti, F.; Valdré, G. Study of Structural Properties of Ion Treated and Mechanically Deformed Commercial Bentonite. Appl. Clay Sci. 2005, 28, 233–244. [Google Scholar] [CrossRef]
- Hoang-Minh, T.; Kasbohm, J.; Nguyen-Thanh, L.; Nga, P.T.; Lai, L.T.; Duong, N.T.; Thanh, N.D.; Thuyet, N.T.M.; Anh, D.D.; Pusch, R.; et al. Use of TEM-EDX for Structural Formula Identification of Clay Minerals: A Case Study of Di Linh Bentonite, Vietnam. J. Appl. Crystallogr. 2019, 52, 133–147. [Google Scholar] [CrossRef]
- Darvishi, Z.; Morsali, A. Synthesis and Characterization of Nano-Bentonite by Sonochemical Method. Ultrason. Sonochem. 2011, 18, 238–242. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Alterary, S.S.; AlKhamees, A. Synthesis, Surface Modification, and Characterization of Fe3O4@SiO2 Core@Shell Nanostructure. Green Process. Synthes. 2021, 10, 384–391. [Google Scholar] [CrossRef]
- Piperno, S.; Lozzi, L.; Rastelli, R.; Passacantando, M.; Santucci, S. PMMA Nanofibers Production by Electrospinning. Appl. Surf. Sci. 2006, 252, 5583–5586. [Google Scholar] [CrossRef]
- Balen, R.; Da Costa, W.V.; De Lara Andrade, J.; Piai, J.F.; Muniz, E.C.; Companhoni, M.V.; Nakamura, T.U.; Lima, S.M.; Da Cunha Andrade, L.H.; Bittencourt, P.R.S.; et al. Structural, Thermal, Optical Properties and Cytotoxicity of PMMA/ZnO Fibers and Films: Potential Application in Tissue Engineering. Appl. Surf. Sci. 2016, 385, 257–267. [Google Scholar] [CrossRef]
- Bae, H.-S.; Haider, A.; Selim, K.M.K.; Kang, D.-Y.; Kim, E.-J.; Kang, I.-K. Fabrication of Highly Porous PMMA Electrospun Fibers and Their Application in the Removal of Phenol and Iodine. J. Polym. Res. 2013, 20, 158. [Google Scholar] [CrossRef]
- Wutticharoenmongkol, P.; Sanchavanakit, N.; Pavasant, P.; Supaphol, P. Preparation and Characterization of Novel Bone Scaffolds Based on Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Macromol. Biosci. 2006, 6, 70–77. [Google Scholar] [CrossRef]
- Zhan, F.; Sheng, F.; Yan, X.; Zhu, Y.; Jin, W.; Li, J.; Li, B. Enhancement of Antioxidant and Antibacterial Properties for Tannin Acid/Chitosan/Tripolyphosphate Nanoparticles Filled Electrospinning Films: Surface Modification of Sliver Nanoparticles. Int. J. Biol. Macromol. 2017, 104, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour, M.; Aghdam, A.S.; Koşar, A.; Cebeci, F.Ç.; Ghorbani, M. Electrospinning of Ternary Composite of PMMA-PEG-SiO2 Nanoparticles: Comprehensive Process Optimization and Electrospun Properties. Mater. Today Commun. 2021, 29, 102865. [Google Scholar] [CrossRef]
- von Reitzenstein, N.; Bi, X.; Yang, Y.; Hristovski, K.; Westerhoff, P. Morphology, Structure, and Properties of Metal Oxide/Polymer Nanocomposite Electrospun Mats. J. Appl. Polym. Sci. 2016, 133, 43811. [Google Scholar] [CrossRef]
- Bulbul, Y.E.; Eskitoros-Togay, M.; Demirtas-Korkmaz, F.; Dilsiz, N. Multi-Walled Carbon Nanotube-Incorporating Electrospun Composite Fibrous Mats for Controlled Drug Release Profile. Int. J. Pharm. 2019, 568, 118513. [Google Scholar] [CrossRef] [PubMed]
- HMTShirazi, R.; Mohammadi, T.; Asadi, A.A. Incorporation of Amine-Grafted Halloysite Nanotube to Electrospun Nanofibrous Membranes of Chitosan/Poly (Vinyl Alcohol) for Cd (II) and Pb(II) Removal. Appl. Clay Sci. 2022, 220, 106460. [Google Scholar] [CrossRef]
- Baghdadi, Y.N.; Youssef, L.; Bouhadir, K.; Harb, M.; Mustapha, S.; Patra, D.; Tehrani-Bagha, A.R. Thermal and Mechanical Properties of Epoxy Resin Reinforced with Modified Iron Oxide Nanoparticles. J. Appl. Polym. Sci. 2021, 138, 50533. [Google Scholar] [CrossRef]
- Saeed, M.; Munir, M.; Nafees, M.; Shah, S.S.A.; Ullah, H.; Waseem, A. Synthesis, Characterization and Applications of Silylation Based Grafted Bentonites for the Removal of Sudan Dyes: Isothermal, Kinetic and Thermodynamic Studies. Microporous Mesoporous Mater. 2020, 291, 109697. [Google Scholar] [CrossRef]
- Zhang, M.; O’Connor, C.J. Synthesis and Characterization of PMMA Coated Magnetite Nanocomposites by Emulsion Polymerization. Mater. Res. Soc. Symp. Proc. 2008, 1032, 123–127. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Lee, W.; Choi, J.C.; Park, S.J.; Kim, M.; Ko, S. Influence of Montmorillonite Nanoclay Content on the Optical, Thermal, Mechanical, and Barrier Properties of Low-Density Polyethylene. Clays Clay Miner. 2017, 65, 387–397. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, D.; Zhang, H.; Lu, S.; Chen, L.; Yu, X. Impact of Environmental Conditions on the Sorption Behavior of Pb(II) in Na-Bentonite Suspensions. J. Hazard. Mater. 2010, 183, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Annan, E.; Nyankson, E.; Agyei-Tuffour, B.; Armah, S.K.; Nkrumah-Buandoh, G.; Hodasi, J.A.M.; Oteng-Peprah, M. Synthesis and Characterization of Modified Kaolin-Bentonite Composites for Enhanced Fluoride Removal from Drinking Water. Adv. Mater. Sci. Eng. 2021, 2021, 6679422. [Google Scholar] [CrossRef]
- Liu, Y.; Gates, W.P.; Bouazza, A. Acid Induced Degradation of the Bentonite Component Used in Geosynthetic Clay Liners. Geotext. Geomembr. 2013, 36, 71–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Wu, Z.; Zhang, Y. Thermal Behavior Analysis of Two Bentonite Samples Selected from China. J. Therm. Anal. Calorim. 2015, 121, 1287–1295. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of Activated Bentonite Clay Mineral and the Mechanisms Underlying Its Sorption for Ciprofloxacin from Aqueous Solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, A. Influence of Ferric Chloride and Humic Acid on Bentonite as Clay Liner. Int. J. Geotech. Eng. 2010, 4, 45–53. [Google Scholar] [CrossRef]
- Shah, A.A.; Cho, Y.H.; Nam, S.E.; Park, A.; Park, Y.I.; Park, H. High Performance Thin-Film Nanocomposite Forward Osmosis Membrane Based on PVDF/Bentonite Nanofiber Support. J. Ind. Eng. Chem. 2020, 86, 90–99. [Google Scholar] [CrossRef]
- Hasanudin, H.; Asri, W.R.; Zulaikha, I.S.; Ayu, C.; Rachmat, A.; Riyanti, F.; Hadiah, F.; Zainul, R.; Maryana, R. Hydrocracking of Crude Palm Oil to a Biofuel Using Zirconium Nitride and Zirconium Phosphide-Modified Bentonite. RSC Adv. 2022, 12, 21916–21925. [Google Scholar] [CrossRef]
- Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract. Molecules 2013, 18, 5954–5964. [Google Scholar] [CrossRef]
- Naseem, T.; Farrukh, M.A. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia Inermis and Gardenia Jasminoides Leaves Extract. J. Chem. 2015, 2015, 912342. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, C.; Megharaj, M. Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustain. Chem. Eng. 2014, 2, 1022–1025. [Google Scholar] [CrossRef]
- Yakovishin, L.; Tkachenko, E.; Tolstenko, Y.; Korzh, E. Development and IR Spectroscopic Analysis of Composite Materials Based on Poly (Methyl Methacrylate) and Chitosan. In Materials Science Forum; Trans Tech Publication: Zurich, Switzerland, 2022; Volume 1065, pp. 145–154. [Google Scholar]
- Mohamed, F.; Ahmad, M.M.; Hameed, T.A. Greener Synthesis of Lightweight, Self-standing PMMA/CoFe2O4 Polymeric Film for Magnetic, Electronic, and Terahertz Shielding Applications. Polym. Adv. Technol. 2023, 34, 1497–1514. [Google Scholar] [CrossRef]
- Kaliramna, S.; Dhayal, S.S.; Kumar, N. Structural and Optical Studies of ZnO Doped PMMA Thin Film and Its Photocatalytic and Antibacterial Activities. Opt. Mater. 2022, 133, 112891. [Google Scholar] [CrossRef]
- Elkhouly, H.I.; Ali, E.M.; El-Sheikh, M.N.; Hassan, A.E.-S.M. An Investigated Organic and Inorganic Reinforcement as an Effective Economical Filler of Poly (Methyl Methacrylate) Nanocomposites. Sci. Rep. 2022, 12, 16416. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.; Zhao, Y.; Bai, J.; Li, Y.; Cao, Y.; Chen, Y.; Xiong, T. Adsorption Behaviors and Mechanisms of Fe/Mg Layered Double Hydroxide Loaded on Bentonite on Cd (II) and Pb (II) Removal. J. Colloid Interface Sci. 2022, 612, 572–583. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Putra, S.R.; Putro, H.S.; Hamzah, A.; Rohma, N.A.; Rohmah, A.A.; Rizqi, H.D.; Tangahu, B.V.; Warmadewanthi, I.; Shimizu, K. The Application of Biosurfactant-Producing Bacteria Immobilized in PVA/SA/Bentonite Bio-Composite for Hydrocarbon-Contaminated Soil Bioremediation. RSC Adv. 2023, 13, 21163–21170. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, M.; Pugazhenthi, G. Effect of Nanoclay Content on the Structural, Thermal Properties and Thermal Degradation Kinetics of PMMA/Organoclay Nanocomposites. Int. J. Nano Biomater. 2014, 5, 27–44. [Google Scholar] [CrossRef]
- Rai, V.N.; Mukherjee, C.; Jain, B. Optical Properties (Uv-Vis and Ftir) of Gamma Irradiated Polymethyl Methacrylate (PMMA). arXiv 2016, arXiv:1611.02129. [Google Scholar]
- Matamoros-Ambrocio, M.; Sánchez-Mora, E.; Gómez-Barojas, E.; Luna-López, J.A. Synthesis and Study of the Optical Properties of PMMA Microspheres and Opals. Polymer 2021, 13, 2171. [Google Scholar] [CrossRef]
- Shi, Z.; Song, L.; Zhang, T. Optical and Electrical Characterization of Pure PMMA for Terahertz Wide-Band Metamaterial Absorbers. J. Infrared Millim. Terahertz Waves 2019, 40, 80–91. [Google Scholar] [CrossRef]
- Aziz, A.; Asib, N.A.M.; Abdullah, N.A.; Mohamed, R.; Rusop, M.; Khusaimi, Z. UV-Vis and Raman Characterization Multilayer of PMMA Films Spin Coated onto Substrate by Sol-Gel Spin-Coating Method. Adv. Mater. Res. 2015, 1109, 613–616. [Google Scholar] [CrossRef]
- Ananthi, S.; Kavitha, M.; Kumar, E.R.; Balamurugan, A.; Al-Douri, Y.; Alzahrani, H.K.; Keshk, A.A.; Habeebullah, T.M.; Abdel-Hafez, S.H.; El-Metwaly, N.M. Natural Tannic Acid (Green Tea) Mediated Synthesis of Ethanol Sensor Based Fe3O4 Nanoparticles: Investigation of Structural, Morphological, Optical Properties and Colloidal Stability for Gas Sensor Application. Sens. Actuators B Chem. 2022, 352, 131071. [Google Scholar] [CrossRef]
- Saad AlGarni, T.; Ali, M.H.H.; Al-Mohaimeed, A.M. Green Biosynthesis of Fe3O4 Nanoparticles Using Chlorella vulgaris Extract for Enhancing Degradation of 2,4 Dinitrophenol. J. King Saud. Univ. Sci. 2023, 35, 102426. [Google Scholar] [CrossRef]
- Karickhoff, S.W.; Bailey, G.W. Optical Absorption Spectra of Clay Minerals. Clays Clay Miner. 1973, 21, 59–70. [Google Scholar] [CrossRef]
- Zehetmeyer, G.; Scheibel, J.M.; Soares, R.M.D.; Weibel, D.E.; Oviedo, M.A.S.; Oliveira, R.V.B. Morphological, Optical, and Barrier Properties of PP/MMT Nanocomposites. Polym. Bull. 2013, 70, 2181–2191. [Google Scholar] [CrossRef]
- Choudhary, N.; Yadav, V.K.; Yadav, K.K.; Almohana, A.I.; Almojil, S.F.; Gnanamoorthy, G.; Kim, D.-H.; Islam, S.; Kumar, P.; Jeon, B.-H. Application of Green Synthesized MMT/Ag Nanocomposite for Removal of Methylene Blue from Aqueous Solution. Water 2021, 13, 3206. [Google Scholar] [CrossRef]
- Giovannini, G.; Garoli, D.; Rupper, P.; Neels, A.; Rossi, R.M.; Boesel, L.F. Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. Sensors 2021, 21, 2655. [Google Scholar] [CrossRef]
- Salmanvandi, H.; Rezaei, P.; Tamsilian, Y. Photoreduction and Removal of Cadmium Ions over Bentonite Clay-Supported Zinc Oxide Microcubes in an Aqueous Solution. ACS Omega 2020, 5, 13176–13184. [Google Scholar] [CrossRef]
- Sattar, M.A. Interface Structure and Dynamics in Polymer-Nanoparticle Hybrids: A Review on Molecular Mechanisms Underlying the Improved Interfaces. ChemistrySelect 2021, 6, 5068–5096. [Google Scholar] [CrossRef]
- Bedoui, F.; Jaramillo-Botero, A.; Pascal, T.A.; Goddard, W.A. Focus on the Deformation Mechanism at the Interfacial Layer in Nano-Reinforced Polymers: A Molecular Dynamics Study of Silica—Poly(Methyl Methacrylate) Nano-Composite. Mech. Mater. 2021, 159, 103903. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Abouelanwar, M.E.; Morcos, B.M. Removal of Polymethyl Methacrylate Nanoplastics and Silver Nanoparticles by a Novel Ferrofluid-COF-Aminated Natural Cotton-Based Hydrogel Nanosorbent. J. Ind. Eng. Chem. 2024, 131, 265–279. [Google Scholar] [CrossRef]
- Thirumala Patil, M.; Lakshminarasimhan, S.N.; Santhosh, G. Optical and Thermal Studies of Host Poly (Methyl Methacrylate) (PMMA) Based Nanocomposites: A Review. Mater. Today Proc. 2021, 46, 2564–2571. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Dhatarwal, P. Polymer Nanocomposites Comprising PMMA Matrix and ZnO, SnO2, and TiO2 Nanofillers: A Comparative Study of Structural, Optical, and Dielectric Properties for Multifunctional Technological Applications. Opt. Mater. 2021, 113, 110837. [Google Scholar] [CrossRef]
- Richter, U.; Dittmar, G.; Ketelsen, H. SpectraRay/3 Software Manual; Sentech Instruments GmbH: Berlin, Germany, 2011. [Google Scholar]
- Hajduk, B.; Bednarski, H.; Jarząbek, B.; Janeczek, H.; Nitschke, P. P3HT:PCBM Blend Films Phase Diagram on the Base of Variable-Temperature Spectroscopic Ellipsometry. Beilstein J. Nanotechnol. 2018, 9, 1108–1115. [Google Scholar] [CrossRef]
- Hajduk, B.; Bednarski, H.; Jarząbek, B.; Nitschke, P.; Janeczek, H. Phase Diagram of P3HT:PC70BM Thin Films Based on Variable-Temperature Spectroscopic Ellipsometry. Polym. Test. 2020, 84, 106383. [Google Scholar] [CrossRef]
- El-Nasser, H. Morphology and Spectroscopic Ellipsometry of PMMA Thin Films. Appl. Phys. Res. 2017, 9, 5. [Google Scholar] [CrossRef]
Sample | Minimum (μm) | Maximum (μm) | Arithmetic Roughness (Ra) (μm) | Root Mean Square Roughness (Rq) (μm) |
---|---|---|---|---|
A | −1.209 | 1.227 | 0.211 | 0.267 |
B | −0.692 | 1.860 | 0.354 | 0.433 |
C | −2.278 | 1.362 | 0.494 | 0.611 |
D | −2.004 | 2.343 | 0.462 | 0.559 |
Sample | (For Biaxial Layer) | |||
---|---|---|---|---|
PMMA | 1.51 | 1.49 | 1.47 | 1.49 |
PMMA 50_50 | 1.57 | 1.50 | 1.49 | 1.52 |
PMMA 70_30 | 1.52 | 1.55 | 1.50 | 1.53 |
PMMA 30_70 | 1.47 | 1.55 | 1.49 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsekpo, Y.M.; Smok, W.; Matus, K.; Hajduk, B.; Radoń, A.; Jarka, P.; Tanski, T. Tuning the Optical Properties of Electrospun Poly(methyl methacrylate) Nanofibres via Montmorillonite and Magnetite Ratios. Polymers 2025, 17, 384. https://doi.org/10.3390/polym17030384
Tsekpo YM, Smok W, Matus K, Hajduk B, Radoń A, Jarka P, Tanski T. Tuning the Optical Properties of Electrospun Poly(methyl methacrylate) Nanofibres via Montmorillonite and Magnetite Ratios. Polymers. 2025; 17(3):384. https://doi.org/10.3390/polym17030384
Chicago/Turabian StyleTsekpo, Yao Mawuena, Weronika Smok, Krzysztof Matus, Barbara Hajduk, Adrian Radoń, Paweł Jarka, and Tomasz Tanski. 2025. "Tuning the Optical Properties of Electrospun Poly(methyl methacrylate) Nanofibres via Montmorillonite and Magnetite Ratios" Polymers 17, no. 3: 384. https://doi.org/10.3390/polym17030384
APA StyleTsekpo, Y. M., Smok, W., Matus, K., Hajduk, B., Radoń, A., Jarka, P., & Tanski, T. (2025). Tuning the Optical Properties of Electrospun Poly(methyl methacrylate) Nanofibres via Montmorillonite and Magnetite Ratios. Polymers, 17(3), 384. https://doi.org/10.3390/polym17030384