Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading
Abstract
:1. Introduction
- Geopolymers (Fatheali et al., 2023 [3]).
- Cement including rubber particles (Zhu et al., 2023 [4]).
- Metal 3D printing (Clarke et al., 2023 [7]).
- Polymer-ceramic filaments (Podgorski et al., 2023 [8]).
2. Materials and Methods
2.1. 3D Printing Process
- A 50% layer height (realitve to the nozzle diameter).
- A 0° infill orientaion (relative to the direction of tensile testing, Figure 2).
- No top and bottom layer.
- Arachne perimeter generation.
- All printing speeds were set to 40 mm/s except the first layer for adhesion purposes, which was 15 mm/s.
- A 250 °C printing temperature.
- Part cooling disabled.
2.2. Tensile Testing
3. Results
- Cross-section area indicates an overall bulk of a specimen.
- Width/height ratio indicates how the deposited material is distributed between layers and extruded lines inside of those layers.
- Width/nozzle diameter is simply the number of extruded lines inside a layer that is perpendicular to the tensile testing.
- Height/layer height gives the information of how many layers the specimens are made up of.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tuli, N.T.; Khatun, S.; Rashid, A.B. Unlocking the future of precision manufacturing: A comprehensive exploration of 3D printing with fiber-reinforced composites in aerospace, automotive, medical, and consumer industries. Heliyon 2024, 10, e27328. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.A.; Shah, O.R.; Ghafoor, U.; Qureshi, Y.; Bhutta, M.R. Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composites via Fused Deposition Modelling: A Comprehensive Review. Polymers 2024, 16, 1622. [Google Scholar] [CrossRef] [PubMed]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Neelakanta Reddy, I.; Shim, J. Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Constr. Build. Mater. 2023, 371, 130688. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, Y.; Zhou, M. Surface modification of recycled tire rubber powders with Tannic acid and Nano-TiO2 for enhanced performance and photocatalytic properties of Rubberized Cement-Based materials. Constr. Build. Mater. 2023, 399, 132607. [Google Scholar] [CrossRef]
- Pi, Z.; Huang, S.; Xu, J.; Chen, Z.; Li, H.; Shen, Y.; Tian, J. The reinforcement mechanism of basalt and polypropylene fibers on the strength, toughness and crack resistance of tailing mortar. Constr. Build. Mater. 2024, 419, 135531. [Google Scholar] [CrossRef]
- Asghari, Y.; Mohammadyan-Yasouj, S.; Petrů, M.; Ghandvar, H.; Koloor, S.R. 3D Printing and Implementation of Engineered Cementitious Composites—A Review. Case Stud. Constr. Mater. 2024, 21, e03462. [Google Scholar] [CrossRef]
- Clarke, A.J.; Dickson, A.; Dowling, D.P. Fabrication and Performance of Continuous 316 Stainless Steel Fibre-Reinforced 3D-Printed PLA Composites. Polymers 2024, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, R.; Wojasiński, M.; Trepkowska-Mejer, E.; Ciach, T. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers. Biomater. Adv. 2023, 146, 213317. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, D.; Qu, Y.; Zhi, Q.; Tian, X.; Li, D.; Zhu, W. Near-perfect turning of robot-based 3D printing continuous carbon fiber reinforced nylon composites based on fiber-scale internal stress characterization. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107805. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; He, Z.; Yang, D. Concurrent optimisation of structural topology and fibre paths for 3D printing of continuous fibre composites based on chain primitive projection. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108333. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Yan, C.; Huang, Z.; Fu, K.; Li, Y. Multi-objective optimization for improving printing efficiency and mechanical properties of 3D-printed continuous plant fibre composites. Compos. Commun. 2022, 35, 101283. [Google Scholar] [CrossRef]
- Ding, S.; Zou, B.; Zhuang, Y.; Wang, X.; Feng, Z.; Liu, Q. Effect of printing design and forming thermal environment on pseudo-ductile behavior of continuous carbon/glass fibers reinforced nylon composites. Compos. Struct. 2023, 322, 117362. [Google Scholar] [CrossRef]
- Liu, B.; Dong, B.; Li, H.; Lou, R.; Chen, Y. 3D printing finite element analysis of continuous fiber reinforced composite materials considering printing pressure. Compos. Part B Eng. 2024, 277, 111397. [Google Scholar] [CrossRef]
- Peng, W.; Ge, Z.; Shao, Y.; Lin, L.; Li, H.; Oleksandr, M. Mechanical behavior of nacre-inspired CFRP composites by 3D printing. Compos. Struct. 2024, 339, 118167. [Google Scholar] [CrossRef]
- Shi, K.; Yan, Y.; Mei, H.; Chen, C.; Cheng, L. 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength. Addit. Manuf. 2021, 39, 101882. [Google Scholar] [CrossRef]
- Ding, S.; Zou, B.; Zhang, P.; Liu, Q.; Zhuang, Y.; Feng, Z.; Wang, F.; Wang, X. Layer thickness and path width setting in 3D printing of pre-impregnated continuous carbon, glass fibers and their hybrid composites. Addit. Manuf. 2024, 83, 104054. [Google Scholar] [CrossRef]
- Rimašauskas, M.; Jasiūnienė, E.; Kuncius, T.; Rimašauskienė, R.; Cicėnas, V. Investigation of influence of printing parameters on the quality of 3D printed composite structures. Compos. Struct. 2022, 281, 115061. [Google Scholar] [CrossRef]
- Sun, B.; Mubarak, S.; Zhang, G.; Peng, K.; Hu, X.; Zhang, Q.; Wu, L.; Wang, J. Fused-Deposition Modeling 3D Printing of Short-Cut Carbon-Fiber-Reinforced PA6 Composites for Strengthening, Toughening, and Light Weighting. Polymers 2023, 15, 3722. [Google Scholar] [CrossRef]
- Calignano, F.; Lorusso, M.; Roppolo, I.; Minetola, P. Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing. Machines 2020, 8, 52. [Google Scholar] [CrossRef]
- Moradi, M.; Malekshahi Beiranvand, Z.; Salimi, N.; Meiabadi, S.; Lawrence, J. Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed. Int. J. Polym. Sci. 2024, 2024, 1234797. [Google Scholar] [CrossRef]
- Rybarczyk, J.B.; Górski, F.; Kuczko, W.; Wichniarek, R.; Siwiec, S.; Vitkovic, N.; Pacurar, R. Mechanical Properties of Carbon Fiber Reinforced Materials for 3D Printing of Ankle Foot Orthoses. Adv. Sci. Technol. Res. J. 2024, 18, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Kámán, A.; Balogh, L.; Tarcsay, B.L.; Jakab, M.; Meszlényi, A.; Turcsán, T.; Egedy, A. Glass Fibre-Reinforced Extrusion 3D-Printed Composites: Experimental and Numerical Study of Mechanical Properties. Polymers 2024, 16, 212. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.H.S.; Miettinen, A.; Léonard, F.; Falzon, B.G.; Withers, P.J. Microstructure and damage evolution in short carbon fibre 3D-printed composites during tensile straining. Compos. Part B Eng. 2025, 292, 112073. [Google Scholar] [CrossRef]
- Hadi, A.; Kadauw, A.; Zeidler, H. The effect of printing temperature and moisture on tensile properties of 3D printed glass fiber reinforced nylon 6. Mater. Today Proc. 2023, 91, 48–55. [Google Scholar] [CrossRef]
- Majko, J.; Vaško, M.; Handrik, M.; Gavlas, M.; Nový, F. Effect of printing parameters on the tensile properties of improperly stored chopped carbon fibres reinforced nylon. Procedia Struct. Integr. 2023, 51, 160–165. [Google Scholar] [CrossRef]
- Blok, L.; Longana, M.; Yu, H.; Woods, B. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
Properties | Testing Method | Typical Value |
---|---|---|
Density | GB/T 1033 | 1.24 (g/) |
Melt flow index | GB/T 3682 | 11.46 (275 °C/5 kg) |
Tensile strength | GB/T 1040 | 140 (MPa) |
Elongation at break | GB/T 1040 | 10.61 (%) |
Flexular strength | GB/T 9341 | 140 (MPa) |
Flexular modulus | GB/T 9341 | 4363 (MPa) |
IZOD impact strength | GB/T 1843 | 18.67 (kJ/) |
Heat distortion temperature | GB/T 1634 | 155 (°C, 0.45 MPa) |
Height/Width Ratio (−) | Cross-Section Area () | Tensile Strength (MPa) | Tensile Strength Deviation (MPa) | Porosity (vol%) | Porosity Deviation (vol%) |
---|---|---|---|---|---|
0.50 | 18.42 | 60.11 | 3.63 | 4.80 | 1.61 |
0.53 | 4.94 | 55.92 | 0.90 | 6.16 | 1.43 |
0.96 | 8.94 | 63.70 | 5.97 | 5.37 | 1.48 |
2.06 | 19.00 | 62.10 | 6.13 | 3.24 | 0.63 |
2.24 | 4.02 | 59.14 | 7.81 | 3.71 | 1.15 |
Height/Width Ratio | Cross-Section Area | Tensile Strength | Tensile Strength Deviation |
---|---|---|---|
(−) | (mm2) | (MPa) | (MPa) |
0.27 | 10.66 | 40.62 | 2.13 |
0.50 | 20.58 | 65.33 | 2.37 |
0.99 | 40.93 | 68.03 | 1.77 |
1.05 | 10.03 | 63.39 | 10.99 |
1.96 | 82.23 | 53.04 | 0.84 |
2.04 | 20.27 | 60.49 | 1.66 |
2.99 | 120.27 | 49.21 | 3.83 |
4.02 | 40.52 | 61.25 | 2.18 |
5.02 | 50.91 | 62.52 | 3.92 |
6.19 | 58.62 | 62.92 | 1.23 |
7.13 | 69.86 | 59.71 | 0.49 |
8.50 | 18.99 | 67.48 | 0.53 |
Height/Width Ratio | Cross-Section Area | Tensile Strength | Tensile Strength Deviation |
---|---|---|---|
(−) | (mm2) | (MPa) | (MPa) |
0.29 | 11.10 | 50.47 | 2.67 |
0.54 | 21.18 | 39.69 | 0.74 |
1.09 | 10.54 | 41.21 | 2.36 |
2.16 | 20.17 | 48.11 | 0.55 |
4.91 | 59.46 | 44.99 | 3.67 |
6.84 | 81.60 | 41.06 | 0.53 |
8.00 | 23.95 | 46.92 | 1.18 |
Width/Height Ratio | Cross-Section Area | Tensile Strength | Tensile Strength Deviation |
---|---|---|---|
(−) | (mm2) | (MPa) | (MPa) |
0.24 | 9.54 | 30.67 | 0.25 |
0.47 | 18.37 | 58.26 | 1.74 |
0.97 | 9.49 | 50.00 | 1.96 |
1.03 | 41.06 | 51.26 | 1.37 |
2.00 | 80.29 | 45.10 | 0.65 |
2.11 | 20.44 | 42.82 | 2.72 |
3.02 | 119.26 | 48.96 | 2.91 |
4.00 | 40.60 | 41.76 | 1.81 |
4.98 | 51.47 | 50.60 | 4.41 |
6.18 | 59.13 | 47.33 | 1.52 |
7.14 | 69.24 | 53.96 | 1.83 |
8.48 | 18.94 | 59.86 | 0.78 |
Width/Height Ratio | Cross-Section Area | Tensile Strength | Tensile Strength Deviation |
---|---|---|---|
(−) | (mm2) | (MPa) | (MPa) |
0.22 | 36.20 | 28.84 | 1.24 |
0.24 | 9.63 | 31.84 | 2.22 |
0.44 | 18.53 | 31.44 | 0.86 |
0.88 | 9.11 | 34.99 | 1.62 |
1.06 | 43.35 | 32.55 | 1.71 |
2.16 | 21.75 | 29.85 | 3.32 |
4.19 | 40.80 | 35.49 | 5.11 |
4.61 | 54.54 | 46.59 | 0.26 |
6.71 | 74.39 | 48.72 | 0.43 |
6.96 | 23.56 | 40.95 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kámán, A.; Meszlényi, A.; Jakab, M.; Kovács, A.; Egedy, A. Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading. Polymers 2025, 17, 401. https://doi.org/10.3390/polym17030401
Kámán A, Meszlényi A, Jakab M, Kovács A, Egedy A. Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading. Polymers. 2025; 17(3):401. https://doi.org/10.3390/polym17030401
Chicago/Turabian StyleKámán, András, Armand Meszlényi, Miklós Jakab, András Kovács, and Attila Egedy. 2025. "Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading" Polymers 17, no. 3: 401. https://doi.org/10.3390/polym17030401
APA StyleKámán, A., Meszlényi, A., Jakab, M., Kovács, A., & Egedy, A. (2025). Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading. Polymers, 17(3), 401. https://doi.org/10.3390/polym17030401