Enhancing Carbon Fiber-Reinforced Polymers’ Performance and Reparability Through Core–Shell Rubber Modification and Patch Repair Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Manufacturing
2.2.1. CSR Investigation
- Bending and tensile tests: 8 layers of G0926;
- Shear and fracture toughness tests: 12 layers of UD-C415;
- Impact tests: 10 layers of UD-C415.
- Bending and tensile specimens: Average thickness of 3.05 mm, G0926 fabric with a nominal weight of 375 g/m2 and a density of 1.76 g/cm3, yielding 55.89% fiber content;
- Shear and fracture toughness specimens: Average thickness of 4.5 mm, 12 layers of UD-C415 fabric with a nominal weight of 415 g/m2 and a density of 1.82 g/cm3, resulting in 60.8% fiber content;
- Impact specimens: Average thickness of 4 mm, 10 layers of UD-C415 fabric, giving a fiber content of 56.5%.
2.2.2. Patch Repair Mechanisms
- Repaired 1:1: Patch thickness matching the specimen (5 mm);
- Repaired 1:2: Patch thickness half that of the specimen (2.5 mm).
2.3. Mechanical Testing
- P: Maximum applied load (N);
- L: Support span (mm);
- b: Width of the specimen (mm);
- d: Thickness of the specimen (mm).
- P: Maximum applied load (N);
- A: Cross-sectional area of the specimen (mm2).
- Complete fracture (C): The specimen is fully broken into two or more separate pieces.
- Incomplete fracture (H): The specimen is partially fractured, with the two sections connected by a thin, flexible layer of low stiffness.
- Partial fracture (P): The specimen exhibits a break where the two sections are held together by a thicker, sturdier layer compared with the incomplete fracture.
- Non-fracture (N): The specimen does not break; instead, it undergoes bending without separation.
- E: Energy absorbed during fracture (J);
- b: Width of the specimen (mm);
- d: Thickness of the specimen (mm).
- P: Applied load (N);
- δ: Displacement at the loading point (mm);
- b: Specimen width (mm);
- a: Crack length (mm);
- |Δ|: Correction factor (mm).
- Pmax: Maximum load sustained by the specimen (N);
- b: Specimen width (mm);
- h: Specimen thickness (mm).
- m: Mass of the impactor (kg) = 10 kg;
- g: Gravitational acceleration (m/s2) = 9.81 m/s2;
- h: Falling height (m) = 0.8 m.
2.4. Non-Destructive Testing
3. Results
3.1. Flexural Test
3.2. Tensile Test
3.3. Impact Test (Pendulum)
3.4. Fracture Toughness Test
3.5. Short-Beam Test
3.6. Fracture Analysis
3.7. Drop-Weight Impact Test
3.8. Ultrasound
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayam, A.; Rahman, A.N.M.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Lett. 2022, 32, 1173–1205. [Google Scholar] [CrossRef]
- Jang, D.; Lee, M.E.; Choi, J.; Cho, S.Y.; Lee, S. Strategies for the production of PAN-Based carbon fibers with high tensile strength. Carbon 2022, 186, 644–677. [Google Scholar] [CrossRef]
- Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent progress in carbon fiber reinforced polymers recycling: A review of recycling methods and reuse of carbon fibers. Materials 2021, 14, 6401. [Google Scholar] [CrossRef] [PubMed]
- Sukanto, H.; Raharjo, W.W.; Ariawan, D.; Triyono, J. Carbon fibers recovery from CFRP recycling process and their usage: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012087. [Google Scholar] [CrossRef]
- Becker-Staines, A.; Bremser, W.; Tröster, T. Cyclodextrin as sizing for carbon fibers: New bonding mechanism improves adhesion in carbon fiber reinforced epoxy resin. Heliyon 2020, 6, e03766. [Google Scholar] [CrossRef]
- Rankin, S.M.; Moody, M.K.; Naskar, A.K.; Bowland, C.C. Enhancing functionalities in carbon fiber composites by titanium dioxide nanoparticles. Compos. Sci. Technol. 2021, 201, 108491. [Google Scholar] [CrossRef]
- Okeola, A.A.; Hernandez-Limon, J.E.; Tatar, J. Core–Shell Rubber Nanoparticle-Modified CFRP/Steel Ambient-Cured Adhesive Joints: Curing Kinetics and Mechanical Behavior. Materials 2024, 17, 749. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 6855. [Google Scholar] [CrossRef]
- Xue, X.; Liu, S.Y.; Zhang, Z.Y.; Wang, Q.Z.; Xiao, C.Z. A technology review of recycling methods for fiber-reinforced thermosets. J. Reinf. Plast. Compos. 2022, 41, 459–480. [Google Scholar] [CrossRef]
- Glaskova-Kuzmina, T.; Stankevics, L.; Tarasovs, S.; Sevcenko, J.; Špaček, V.; Sarakovskis, A.; Zolotarjovs, A.; Shmits, K.; Aniskevich, A. Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP. Materials 2022, 15, 7502. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Raouf Javidi, M.; Paydayesh, A.; Khonakdar, H.A.; Arjmand, M.; Rostami, E.; Jafari, S.H. Toughening of epoxy resin systems using core–shell rubber particles: A literature review. J. Mater. Sci. 2021, 56, 18345–18367. [Google Scholar] [CrossRef]
- Hall, Z.E.C.; Liu, J.; Brooks, R.A.; Liu, H.; Crocker, J.W.M.; Joesbury, A.M.; Harper, L.T.; Blackman, B.R.K.; Kinloch, A.J.; Dear, J.P. The effectiveness of patch repairs to restore the impact properties of carbon-fibre reinforced-plastic composites. Eng. Fract. Mech. 2022, 270, 108570. [Google Scholar] [CrossRef]
- Tie, Y.; Hou, Y.; Li, C.; Zhou, X.; Sapanathan, T.; Rachik, M. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches. Compos. Struct. 2018, 190, 179–188. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Hall, Z.E.C.; Brooks, R.A.; Crocker, J.W.M.; Joesbury, A.M.; Harper, L.T.; Blackman, B.R.K.; Kinloch, A.J.; Dear, J.P. Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates. Compos. Sci. Technol. 2023, 233, 109917. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, W.; Zhou, J.; Altenaiji, M.; Cantwell, W.J.; Wang, Q.Y.; Guan, Z.W. Mechanical behaviour of composite laminates repaired with a stitched scarf patch. Compos. Struct. 2021, 255, 112928. [Google Scholar] [CrossRef]
- Santos, M.; Santos, J.; Reis, P.; Amaro, A. Ultrasonic C-scan techniques for the evaluation of impact damage in CFRP. Mater. Test. 2021, 63, 131–137. [Google Scholar] [CrossRef]
- D7136/D7136M-12; Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d0790-17.html (accessed on 29 November 2024).
- ISO 180:2023(en); Plastics—Determination of Izod Impact Strength. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:180:ed-5:v1:en (accessed on 29 November 2024).
- D5528/D5528M-21; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/d5528_d5528m-21.html (accessed on 29 November 2024).
- Carolan, D.; Ivankovic, A.; Kinloch, A.J.; Sprenger, S.; Taylor, A.C. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J. Mater. Sci. 2017, 52, 1767–1788. [Google Scholar] [CrossRef]
- Li, S.; Wu, Q.; Zhu, H.; Lin, Q.; Wang, C. Impact Resistance Enhancement by Adding Core-Shell Particle to Epoxy Resin Modified with Hyperbranched Polymer. Polymers 2017, 9, 684. [Google Scholar] [CrossRef]
- D2344/D2344M-22; Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/d2344_d2344m-22.html (accessed on 4 December 2024).
- D7136/D7136M-15; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d7136_d7136m-15.html (accessed on 29 November 2024).
- Chen, J.; Kinloch, A.J.; Sprenger, S.; Taylor, A.C. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 2013, 54, 4276–4289. [Google Scholar] [CrossRef]
- Li, S.; Lin, Q.; Cui, C. The effect of core–shell particles on the mechanical performance of epoxy resins modified with hyperbranched polymers. J. Mater. Res. 2016, 31, 1393–1402. [Google Scholar] [CrossRef]
- Park, H.; Jung, H.; Yu, J.; Park, M.; Kim, S.Y. Carbon fiber-reinforced plastics based on epoxy resin toughened with core shell rubber impact modifiers. e-Polymers 2015, 15, 369–375. [Google Scholar] [CrossRef]
- Quan, D.; Ivankovic, A. Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 2015, 66, 16–28. [Google Scholar] [CrossRef]
- Determination of the Fracture Process Zone Under Mode I Fracture in Glass Fiber Composites. Available online: https://journals.sagepub.com/doi/epub/10.1177/0021998311401934 (accessed on 9 January 2025).
- Van Velthem, P.; Gabriel, S.; Pardoen, T.; Bailly, C.; Ballout, W. Synergy between Phenoxy and CSR Tougheners on the Fracture Toughness of Highly Cross-Linked Epoxy-Based Composites. Polymers 2021, 13, 2477. [Google Scholar] [CrossRef] [PubMed]
Code | Type of Fabric | Yarns | Weave | Weight Distribution (Warp–Weft%) | Nominal Weight (g/m2) | Density (g/cm3) |
---|---|---|---|---|---|---|
G0926 | Multiaxial | Warp: CF, TENAX E HTA40 E13 6K Weft: CF, TENAX E HTA40 E13 6K | 5H Satin | 50–50 | 375 | 1.76 |
C415 | Unidirectional | Warp: 12K CF Weft: GF | UD, woven | 92–8 | 415 | 1.82 |
Resin Systems | Component A (Resin) | Component B (Hardener) | Component C (Accelerator) | Ratio (w/w%) | Curing/ Post-Curing Conditions |
---|---|---|---|---|---|
System 1 | Araldite LY 556 | Aradur 917 | DY 070 | 100:90:0.5 | 4 h at 80 °C/ 4 h at 120 °C |
System 2 | Kaneace MX156 (75% resin/25% CSR) | 133:90:0.5 | 4 h at 80 °C/ 4 h at 120 °C |
A/A | Matrix | Matrix Mixing Ratio | Fabric Type | Average Thickness (mm) | Nο. of Plies | Nominal Weight (g/m2) | Density (g/cm3) | Vf (%) | Mechanical Tests |
---|---|---|---|---|---|---|---|---|---|
Pristine_ Panel_ 1 | Araldite LY 556 + Aradur 917 + Accelerator DY 070 | 100:90:0.5 | G0926 | 3.05 | 8 | 375 | 1.76 | 55.89 | 3-point bend tensile |
Pristine_ Panel_ 2 | UD C415 | 4.5 | 12 | 415 | 1.82 | 60.8 | MODE I short beam | ||
Pristine_ Panel_ 3 | UD C415 | 4.5 | 10 | 415 | 1.82 | 56.5 | Impact | ||
MX156_ Panel_ 1 | MX156 + Aradur 917 + Accelerator DY 070 | 133:90:0.5 | G0926 | 3.05 | 8 | 375 | 1.76 | 58.7 | 3-point bend tensile |
MX156_ Panel_ 2 | UD C415 | 4.5 | 12 | 415 | 1.82 | 61.19 | MODE I short beam | ||
MX156_ Panel_ 3 | UD C415 | 4.5 | 10 | 415 | 1.82 | 57 | Impact |
Reference | Repaired 1:1 | Repaired 1:2 | |
---|---|---|---|
Number of samples | 6 | 7 | 8 |
Composite resin system | Araldite LY 556/Aradur 917/DY 070 (100:90:0.5) | ||
Patch resin system | MX156 + Aradur 917 + Accelerator DY 070 (133:90:0.5) | ||
Composite/patch reinforcement | G0926 | ||
Composite dimensions, mm (L × W × t) | 100 × 150 × 5 | ||
Damage dimensions, mm (D × t) | N/A | 30 × 5 | 30 × 5 |
Repair patch dimensions, mm (D × t) | N/A | 45 × 5 | 45 × 2.5 |
Technical Details | |
---|---|
Transducer type matrix | 2D-array |
Transducer elements | 128 × 128 (16.384) |
Transducer aperture | 32 × 32 mm |
Element pitch | 250 μm |
Center frequency | 5 MHz–6 dB |
Frequency bandwidth | 120% |
Sample rate | 50 MHz |
Acquisition rate A-scans | 100.000–500.000 datasets per second |
Acquisition rate 3D | 10–40 3D volumes per second |
Specimen Type | Flexural Strength (MPa) | Modulus (GPa) | Strain (%) |
---|---|---|---|
Pristine | 768 ± 19 | 49.2 ± 1 | 1.84 ± 0.06 |
MX 156 | 662 ± 10 | 39.1 ± 1.6 | 2.32 ± 0.16 |
Specimen Type | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain (%) |
---|---|---|---|
Pristine | 776 ± 11 | 61.8 ± 1.3 | 1.17 |
MX 156 | 679 ± 16 | 57.4 ± 0.6 | 1.16 |
Specimen Type | Type of Breakage | Impact Strength (kJ/m2) |
---|---|---|
Pristine | P | 83.7 ± 12.9 |
MX156 | P | 125.4 ± 29.3 |
α (mm) | Pristine GI (J/m2) | MX156 GI (J/m2) | % Increase Compared with Pristine |
---|---|---|---|
50 | 210 ± 15 | 590 ± 41 | +181 |
55 | 310 ± 22 | 790 ± 55 | +155 |
60 | 405 ± 28 | 990 ± 69 | +144 |
65 | 385 ± 27 | 890 ± 62 | +131 |
70 | 415 ± 29 | 840 ± 59 | +102 |
75 | 425 ± 30 | 815 ± 57 | +91 |
80 | 405 ± 28 | 795 ± 56 | +96 |
Specimen Type | ILLS (MPa) |
---|---|
Pristine | 59.6 ± 4.2 |
MX156 | 53.7 ± 1.9 |
Fm (kN) | Em (J) | |
---|---|---|
Reference | 18.17 ± 1.86 | 43.42 ± 6.54 |
Repaired 1:1 | 17.58 ± 0.79 | 59.62 ± 3.63 |
Repaired 1:2 | 8.68 ± 0.46 | 23.90 ± 2.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semitekolos, D.; Terzopoulou, S.; Charitidis, C. Enhancing Carbon Fiber-Reinforced Polymers’ Performance and Reparability Through Core–Shell Rubber Modification and Patch Repair Techniques. Polymers 2025, 17, 407. https://doi.org/10.3390/polym17030407
Semitekolos D, Terzopoulou S, Charitidis C. Enhancing Carbon Fiber-Reinforced Polymers’ Performance and Reparability Through Core–Shell Rubber Modification and Patch Repair Techniques. Polymers. 2025; 17(3):407. https://doi.org/10.3390/polym17030407
Chicago/Turabian StyleSemitekolos, Dionisis, Sofia Terzopoulou, and Costas Charitidis. 2025. "Enhancing Carbon Fiber-Reinforced Polymers’ Performance and Reparability Through Core–Shell Rubber Modification and Patch Repair Techniques" Polymers 17, no. 3: 407. https://doi.org/10.3390/polym17030407
APA StyleSemitekolos, D., Terzopoulou, S., & Charitidis, C. (2025). Enhancing Carbon Fiber-Reinforced Polymers’ Performance and Reparability Through Core–Shell Rubber Modification and Patch Repair Techniques. Polymers, 17(3), 407. https://doi.org/10.3390/polym17030407