All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Keratin Biofibers and Ground Rachis
2.3. Composite Preparation
Percentage of Keratin Reinforcement (wt%) | Type of Keratin Reinforcement | ||
---|---|---|---|
Long Biofiber | Short Biofiber | Ground Quill | |
5 | ChS-LB05 | ChS-SB05 | ChS-GQ05 |
10 | ChS-LB10 | ChS-SB10 | ChS-GQ10 |
15 | ChS-LB15 | ChS-SB15 | ChS-GQ15 |
20 | ChS-LB20 | ChS-SB20 | ChS-GQ20 |
2.4. Characterization Methods
3. Results and Discussion
3.1. Fiber Dispersion and Physical Appearance of Composites
3.2. Morphology of Composites Studied by Scanning Electron Microscopy
3.3. Thermogravimetrical Analysis
3.4. Differential Scanning Calorimetry
3.5. Dynamical Mechanical Analysis
3.6. Fourier Transform Infrared Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. B Eng. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Brostow, W.; Datashvili, T.; Miller, H. Wood and wood derived materials. J. Mater. Educ. 2010, 32, 125–138. [Google Scholar]
- Tang, X.Z.; Kumar, P.; Alavi, S.; Sandeep, K.P. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit. Rev. Food Sci. Nutr. 2012, 52, 426–442. [Google Scholar] [CrossRef]
- Espíndola-González, A.; Martínez-Hernández, A.L.; Fernández-Escobar, F.; Castaño, V.M.; Brostow, W.; Datashvili, T.; Velasco-Santos, C. Natural-Synthetic hybrid polymers developed via electrospinning: the effect of PET in chitosan/starch system. Int. J. Mol. Sci. 2011, 12, 1908–1920. [Google Scholar] [CrossRef]
- Bustos-Ramírez, K.; Martínez-Hernández, A.L.; Martínez-Barrera, G.; de Icaza, M.; Castaño, V.M.; Velasco-Santos, C. Covalently bonded chitosan on grapheme oxide via redox reaction. Materials 2013, 6, 911–926. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Xie, F.; Pollet, E.; Halley, P.J.; Avérous, L. Starch-based nano-biocomposites. Prog. Polym. Sci. 2013, 38, 1590–1628. [Google Scholar] [CrossRef]
- Cerclé, C.; Sarazin, P.; Favis, B.D. High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydr. Polym. 2013, 92, 138–148. [Google Scholar] [CrossRef]
- Aguilar-Palazuelos, E.; Zazueta-Morales, J.J.; Jiménez-Arevalo, O.A.; Martínez-Bustos, F. Mechanical and structural properties of expanded extrudates produced from blends of native starches and natural fibers of henequen and coconut. Starch 2007, 59, 533–542. [Google Scholar] [CrossRef]
- Willett, J.L.; Schrogen, R.L. Processing and properties of extruded starch/polymer foams. Polymer 2002, 43, 5935–5947. [Google Scholar] [CrossRef]
- Hang, A.T.; Tae, B.; Park, J.S. Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr. Polym. 2010, 82, 472–479. [Google Scholar] [CrossRef]
- Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. Effects of chitosan on the physochemical and antimicrobial properties of PLA films. J. Food Eng. 2013, 119, 236–243. [Google Scholar] [CrossRef]
- Mathew, S.; Brahmakumar, M.; Emilia Abraham, T. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers 2006, 82, 176–187. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starch-chitosan blend biodegradable film. Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar]
- Martínez-Hernández, A.L.; Velasco-Santos, C.; de Icaza, M.; Castaño, V.M. Microstructural characterization of keratin fibres from chicken feathers. Int. J. Environ. Pollut. 2005, 23, 162–178. [Google Scholar]
- Martínez-Hernández, A.L.; Velasco-Santos, C. Keratin Fibers from Chicken Feathers: Structure and Advances in Polymer Composites. In Keratin: Structure, Properties and Applications; Dullart, R., Mousques, J., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 149–211. [Google Scholar]
- Martínez-Hernández, A.L.; Velasco-Santos, C.; de Icaza, M.; Castaño, V.M. Grafting of methyl methacrylate onto natural keratin. e-Polymers 2003, 3, 209–219. [Google Scholar]
- Martínez-Hernández, A.L.; Santiago-Valtierra, A.L.; Alvarez-Ponce, M.J. Chemical modification of keratin biofibres by graft polimerization of methyl methacrylate using redox initiation. Mater. Res. Innov. 2008, 12, 184–191. [Google Scholar] [CrossRef]
- Rivera-Armenta, J.L.; Flores-Hernández, C.F.; Del Angel-Aldana, R.Z.; Mendoza-Martínez, A.M.; Velasco-Santos, C.; Martínez-Hernández, A.L. Evaluation of graft copolymerization of acrylic monomers onto natural polymers by means infrared spectroscopy. In Infrared Spectroscopy-Material Science, Engineering and Technology; Theophanides, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 245–260. [Google Scholar]
- Barone, J.R.; Schmidt, W.F.; Liebner, C.F.E. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Compos. Sci. Technol. 2005, 65, 683–692. [Google Scholar] [CrossRef]
- Barone, J.R.; Schmidt, W.F. Polyethelene reinforced with keratin fibers obtained from chicken feathers. Compos. Sci. Technol. 2005, 65, 173–181. [Google Scholar] [CrossRef]
- Huda, S.; Yang, Y. Composites from ground chicken quill and polypropylene. Compos. Sci. Technol. 2008, 68, 790–798. [Google Scholar] [CrossRef]
- Bullions, T.A.; Hoffman, D.; Gillespie, R.A.; Price-O´Brien, J.; Loos, A.C. Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos. Sci. Technol. 2006, 66, 102–114. [Google Scholar] [CrossRef]
- Jiménez-Cervantes Amieva, E.; Velasco-Santos, C.; Martínez-Hernández, A.L.; Rivera-Armenta, J.L.; Mendoza-Martínez, A.M.; Castaño, V.M. Composites from chicken feather quill and recycled polypropylene. J. Compos. Mater. 2014, in press. [Google Scholar]
- Martínez-Hernández, A.L.; Velasco-Santos, C.; de Icaza, M.; Castaño, V.M. Mechanical properties evaluation of new composites with protein biofibers reinforcing poly (methyl methacylate). Polymer 2005, 46, 8233–8238. [Google Scholar] [CrossRef]
- Saucedo-Rivalcoba, V.; Martínez-Hernández, A.L.; Martínez-Barrera, G.; Velasco-Santos, C.; Castaño, V.M. (Chicken feathers keratin)/polyurethane membranes. Appl. Phys. A 2011, 104, 219–228. [Google Scholar] [CrossRef]
- Winandy, J.E.; Muehl, J.H.; Micaels, J.A.; Raina, A. Potential of chicken feather fibre in Wood mdf composites. Available online: http://www.fpl.fs.fed.us/documnts/pdf2003/winan03d.pdf (accessed on 4 March 2014).
- Hong, C.K.; Wool, R.P. Development of a bio-based composite material from soybean oil and keratin fibers. J. Appl. Polym. Sci. 2005, 95, 1524–1538. [Google Scholar] [CrossRef]
- Cheng, S.; Lau, K.; Liu, T.; Yongqing, Z.; Lam, P.; Yin, Y. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos. B 2009, 40, 650–654. [Google Scholar] [CrossRef]
- Gassner, G.; Line, M.J.; Schmidt, W.; Clayton, T.; Waters, R. Fiber and fiber products produced from feathers. US Patent US5705030, 6 January 1998. [Google Scholar]
- Wan, Y.; Lu, X.; Dalai, S.; Zhang, J. Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochim. Acta 2009, 487, 33–38. [Google Scholar] [CrossRef]
- Popescu, C.; Augustin, P. Effect of chlorination treatment on the thermogravimetric behavior of wool fibers. J. Therm. Anal. Calorim. 1999, 57, 509–515. [Google Scholar] [CrossRef]
- Balaji, S.; Kumar, R.; Sripriya, R.; Kakkar, P.; Vijaya Ramesh, D. Preparation and comparative characterization of keratin-chitosan and keratin-gelatin composite scaffolds for tissue engineering applications. Mater. Sci. Eng. C 2012, 32, 975–982. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding wear, viscoelasticity and brittleness of polymers. J. Mater. Res. 2006, 21, 2422–2428. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E.; Narkis, M. The concept of materials brittleness and its applications. Polym. Bull. 2011, 67, 1697–1707. [Google Scholar] [CrossRef]
- Menard, K.P. Dynamic Mechanical Analysis: A Practical Introduction; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Kaushik, A.; Singh, M.; Verma, G. Green nanocomposites based in thermoplastic starch and steam exploded cellulose nanofibrils from wheat Straw. Carbohydr. Polym. 2010, 82, 337–345. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Characterisation of ferulic acid incorporated starch chitosan blend films. Food Hydrocoll. 2008, 22, 826–835. [Google Scholar] [CrossRef]
- Akter, N.; Khan, R.A.; Tuhin, M.O.; Haque, M.E.; Nurnabi, M.; Parvin, F.; Islam, R. Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films. J. Thermoplast. Compos. Mater. 2012. [Google Scholar] [CrossRef]
- Shen, X.L.; Wu, J.M.; Chen, Y.; Zhao, G. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll. 2010, 24, 285–290. [Google Scholar] [CrossRef]
- Rodríguez-González, C.; Martínez-Hernández, A.L.; Castaño, V.M.; Kharissova, O.V.; Ruoff, R.S.; Velasco-Santos, C. Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind. Eng. Chem. Res. 2012, 51, 3619–3629. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Flores-Hernández, C.G.; Colín-Cruz, A.; Velasco-Santos, C.; Castaño, V.M.; Rivera-Armenta, J.L.; Almendarez-Camarillo, A.; García-Casillas, P.E.; Martínez-Hernández, A.L. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers 2014, 6, 686-705. https://doi.org/10.3390/polym6030686
Flores-Hernández CG, Colín-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, García-Casillas PE, Martínez-Hernández AL. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers. 2014; 6(3):686-705. https://doi.org/10.3390/polym6030686
Chicago/Turabian StyleFlores-Hernández, Cynthia G., Arturo Colín-Cruz, Carlos Velasco-Santos, Víctor M. Castaño, José L. Rivera-Armenta, Armando Almendarez-Camarillo, Perla E. García-Casillas, and Ana L. Martínez-Hernández. 2014. "All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers" Polymers 6, no. 3: 686-705. https://doi.org/10.3390/polym6030686
APA StyleFlores-Hernández, C. G., Colín-Cruz, A., Velasco-Santos, C., Castaño, V. M., Rivera-Armenta, J. L., Almendarez-Camarillo, A., García-Casillas, P. E., & Martínez-Hernández, A. L. (2014). All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers, 6(3), 686-705. https://doi.org/10.3390/polym6030686