Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation
Abstract
:1. Introduction
2. Experimental Section
2.1. Samples
2.2. Measurements
3. Results and Discussion
3.1. SEM Analysis
3.2. XRD Analysis
Sample | Ti-WACF | Mn/600Ti-N-WACF | Mn/300Ti-N-WACF | Mn/100Ti-N-WACF | Mn/50Ti-N-WACF |
---|---|---|---|---|---|
2θ101 (°) | 25.24 | 25.23 | 25.24 | 25.22 | 25.23 |
β101 (°) | 0.4325 | 0.5873 | 0.6739 | 0.5903 | 0.4344 |
Diameter (nm) | 36.4 | 26.8 | 23.3 | 26.6 | 36.2 |
3.3. XPS Analysis
Samples | C | O | Ti | Mn | N | P | O/C (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BE (eV) | atom % | BE (eV) | atom % | BE (eV) | atom % | BE (eV) | atom % | BE (eV) | atom % | BE (eV) | atom % | ||
Ti-WACF | 284.5 | 73.18 | 531.6 | 25.87 | 458.8 | 0.91 | 636.8 | 0 | 401.1 | 0 | 135.0 | 0.04 | 35 |
Mn/600Ti-N-WACF | 284.4 | 77.86 | 532.1 | 16.12 | 458.8 | 5.15 | 639.5 | 0.14 | 399.2 | 0.65 | 134.0 | 0.08 | 21 |
Mn/300Ti-N-WACF | 284.4 | 74.80 | 531.9 | 20.71 | 458.7 | 3.64 | 640.1 | 0.15 | 398.9 | 0.56 | 131.9 | 0.14 | 28 |
Mn/100Ti-N-WACF | 284.5 | 77.69 | 531.9 | 19.03 | 458.6 | 2.45 | 639.0 | 0.16 | 399.2 | 0.60 | 130.6 | 0.07 | 24 |
Mn/50Ti-N-WACF | 484.5 | 77.46 | 532.1 | 17.90 | 458.6 | 3.69 | 641.1 | 0.19 | 399.1 | 0.62 | 128.7 | 0.14 | 23 |
Samples | Graphite (Cp1) | C–OH (Cp2) | C=O (Cp3) | C–OOH (Cp4) | CO32−,CO.CO2 (Cp5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
BE (eV) | M (%) | BE (eV) | M (%) | BE (eV) | M (%) | BE (eV) | M (%) | BE (eV) | M (%) | |
Ti-WACF | 284.6 | 83.9 | - | - | 287.0 | 6.5 | 288.5 | 9.6 | - | - |
Mn/600Ti-N-WACF | 284.6 | 58.4 | 285.7 | 14.8 | 286.8 | 13.2 | 288.9 | 8.3 | 290.7 | 5.5 |
Mn/300Ti-N-WACF | 284.6 | 76.0 | - | - | 286.6 | 11.4 | 288.5 | 7.4 | 289.5 | 5.2 |
Mn/100Ti-N-WACF | 284.6 | 70.5 | - | - | 286.4 | 15.9 | 288.6 | 8.9 | 290.4 | 4.7 |
Mn/50Ti-N-WACF | 284.6 | 60.0 | 285.9 | 19.2 | 287.0 | 7.4 | 288.8 | 8.4 | 290.8 | 4.9 |
Samples | OL | OOH | Oad | Ti–O–N | ||||
---|---|---|---|---|---|---|---|---|
BE (eV) | M (%) | BE (eV) | M (%) | BE (eV) | M (%) | BE (eV) | M (%) | |
Ti-WACF | 530.4 | 17.2 | 531.5 | 52.5 | 532.8 | 30.3 | - | - |
Mn/600Ti-N-WACF | 530.0 | 18.0 | 532.1 | 53.7 | 533.6 | 24.1 | 535.9 | 4.2 |
Mn/300Ti-N-WACF | 530.3 | 29.7 | 531.9 | 43.5 | 533.3 | 24.0 | 535.2 | 2.8 |
Mn/100Ti-N-WACF | 529.8 | 20.4 | 531.8 | 47.3 | 533.3 | 30.7 | 535.4 | 1.6 |
Mn/50Ti-N-WACF | 530.0 | 18.1 | 531.8 | 48.7 | 533.3 | 32.0 | 535.8 | 1.2 |
3.4. UV-vis Spectrometry
3.5. Photocatalytic Degradation of Methylene Blue
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Linsebigler, A.L.; Lu, G.Q.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Mills, A.; Elliott, N.; Hill, G.; Fallis, D.; Durrant, J.R.; Willis, R.L. Preparation and characterisation of novel thick sol–gel titania film photocatalysts. Photochem. Photobiol. Sci. 2003, 2, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 2003, 216, 505–516. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, Y.; Song, L.; Hu, X.; Larbot, A. Synthesis and characterization of nanostructured titania film for photocatalysis. Appl. Surf. Sci. 2005, 239, 285–291. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 2008, 130, 5018–5019. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.J.; In, H.K.; El, L.K.; Chan, S.J.; Hyung, S.L.; Kidong, P.; Jeunghee, P. Transition-Metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 2015, 119, 1921–1927. [Google Scholar]
- Vinodgopal, K.; Ulick, S.; Kimberly, A.G.; Prashant, V.K. Eletrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films. J. Phys. Chem. 1994, 98, 6797–6803. [Google Scholar] [CrossRef]
- Klosek, S.; Raftery, D. Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 2001, 105, 2815–2819. [Google Scholar] [CrossRef]
- Paola, A.D.; Marcì, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2002, 106, 637–645. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A: Chem. 2004, 216, 35–43. [Google Scholar] [CrossRef]
- Fei, D.Q.; Hudaya, T.; Adesina, A.A. Visible-light activated titania perovskite photocatalysts: Characterisation and initial activity studies. Catal. Commun. 2005, 6, 253–258. [Google Scholar] [CrossRef]
- Binas, V.D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B Environ. 2012, 113, 79–86. [Google Scholar] [CrossRef]
- Sambrano, J.R.; Nobrega, G.F.; Taft, C.A.; Andres, J.; Beltran, A. A theoretical analysis of the TiO2/Sn doped (110) surface properties. Surf. Sci. 2005, 580, 71–79. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef]
- Kim, J.; Choi, W. TiO2 modified with both phosphate and platinum and its photocatalytic activities. Appl. Catal. B Environ. 2011, 106, 39–45. [Google Scholar] [CrossRef]
- Di, L.; Zhang, X.; Xu, Z.; Wang, K. Atmospheric-pressure cold plasma for preparation of high performance Pt/TiO2 photocatalyst and its mechanism. Plasma Chem. Plasma Process. 2014, 34, 301–311. [Google Scholar] [CrossRef]
- Magagnin, L.; Bernasconi, R.; Ieffa, S.; Diamanti, M.V.; Pezzoli, D.; Candiani, G.; Pedeferri, M.P. Photocatalytic and antimicrobial coatings by electrodeposition of silver/TiO2 nano-composites. ECS Trans. 2013, 45, 1–6. [Google Scholar] [CrossRef]
- Ruggieri, F.; di Camillo, D.; Maccarone, L.; Santucci, S.; Lozzi, L. Electrospun Cu-, W- and Fe-doped TiO2 nanofibres for photocatalytic degradation of rhodamine 6G. J. Nanopart. Res. 2013, 15, 1982–1992. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Aditi, R.G.; Julio, B.F. A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight. J. Solid State Chem. 2005, 178, 2953–2957. [Google Scholar]
- Liu, S.; Syu, H. One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Appl. Energ. 2012, 100, 148–154. [Google Scholar] [CrossRef]
- Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B Environ. 2015, 168, 333–341. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, R.; Li, S.M. Preparation and application of efficient TiO2/ACFs photocatalyst. J. Environ. Sci. 2006, 18, 979–982. [Google Scholar] [CrossRef]
- Yao, S.H.; Li, J.Y.; Shi, Z.L. Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Particuology 2010, 8, 272–278. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, G. Preparation of carbon fibers from liquefied wood. Wood Sci. Technol. 2010, 44, 3–11. [Google Scholar]
- Ma, X.; Zhang, F.; Zhu, J.; Yu, L.; Liu, X. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution. Bioresour. Technol. 2014, 164, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ma, X. Preparation and characterization of activated carbon fibers from liquefied wood. Cellulose 2013, 20, 1649–1656. [Google Scholar] [CrossRef]
- Wonyong, C.; Andreas, T.; Michael, R.H. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar]
- Marci, G.; Palmisano, L.; Sclafani, A.; Venezia, M.; Campostrini, R.; Carturan, G.; Martin, C.; Rives, V.; Solana, G. Influence of tungsten oxide on structural and surface properties of sol–gel prepared TiO2 employed for 4-nitrophenol photodegradation. J. Chem. Soc. Faraday Trans. 1996, 92, 819–829. [Google Scholar] [CrossRef]
- Navio, J.A.; Colon, G.; Macias, M.; Real, C.; Litter, M.I. Iron-doped titania powders prepared by a sol–gel method: Part II: Photocatalytic properties. Appl. Catal. A Gen. 1999, 178, 191–203. [Google Scholar] [CrossRef]
- Bourgeois, S.; Le, S.P.; Perdereau, M. Study by XPS of ultra-thin nickel deposits on TiO2 (100) supports with different stoichiometries. Surf. Sci. 1995, 328, 105–110. [Google Scholar] [CrossRef]
- Chauhan, R.; Kumar, A.; Chaudhary, R.P. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 2012, 98, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.D.; Jiang, Z.; Shi, H.H.; Xiao, T.; Yan, Z. Preparation of highly visible-light active N-doped TiO2 photocatalst. J. Mater. Chem. 2010, 20, 5301–5309. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Lee, C.Y.; Lee, H.C. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment. Mater. Chem. Phys. 2007, 101, 199–210. [Google Scholar] [CrossRef]
- Inagaki, M.; Hirose, Y.; Matsunaga, T.; Tsumura, T.; Toyoda, M. Carbon coatings of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 2003, 41, 2619–2624. [Google Scholar] [CrossRef]
- Rincon, M.E.; Trujillo-Camacho, M.E.; Cuentas-Gallegos, A.K.; Casillas, N. Surface characterization of nanostructured TiO2 and carbon blacks composites by dye adsorption and photoelectrochemical studies. Appl. Catal. B Environ. 2006, 69, 65–74. [Google Scholar] [CrossRef]
- Zou, X.X.; Li, G.D.; Guo, M.Y.; Li, X.H.; Liu, D.P.; Su, J.; Chen, J.S. Heterometal alkoxidesas precursors for the preparation of porous Fe- and Mn-TiO2 photocatalystswith high efficiencies. Chem. Eur. J. 2008, 14, 11123–11131. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, H.; Liu, S.; Wang, S. Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem. Eng. J. 2013, 214, 298–303. [Google Scholar] [CrossRef]
- Yao, Y.; Li, G.; Ciston, S.; Lueptow, R.M.; Gray, K.A. Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity. Environ. Sci. Technol. 2008, 42, 4952–4957. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Tang, X.; Wang, Y.; Koltypin, Y.; Gedanken, A. Selective synthesis of anatase and rutile via ultrasound irradiation. Chem. Commun. 2000, 15, 1415–1416. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.L.; Hong, G.B.; Chang, C.T. Hydrothermal preparation of P25–graphene composite with enhanced adsorption and photocatalytic degradation of dyes. Chem. Eng. J. 2013, 219, 486–491. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Chen, Y. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation. Polymers 2015, 7, 1660-1673. https://doi.org/10.3390/polym7091476
Ma X, Chen Y. Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation. Polymers. 2015; 7(9):1660-1673. https://doi.org/10.3390/polym7091476
Chicago/Turabian StyleMa, Xiaojun, and Yin Chen. 2015. "Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation" Polymers 7, no. 9: 1660-1673. https://doi.org/10.3390/polym7091476
APA StyleMa, X., & Chen, Y. (2015). Preparation and Characterization of Mn/N Co-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber and Its Visible Light Photodegradation. Polymers, 7(9), 1660-1673. https://doi.org/10.3390/polym7091476