Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications
Abstract
:1. Introduction
2. LCST-LCST Type Block Copolymers
3. UCST-LCST Type Block Copolymers
4. Potential of Dual Thermo-Responsive Block Copolymers as Biomedical Applications
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Brooks, W.L.A.; Sumerlin, B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 2013, 42, 7214–7243. [Google Scholar] [CrossRef] [PubMed]
- Stayton, P.S.; Shimoboji, T.; Long, C.; Chilkoti, A.; Chen, G.; Harris, J.M.; Hoffman, A.S. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 1995, 378, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, J.; Nakayama, M.; Okano, T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release 2014, 193, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Okano, T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog. Polym. Sci. 2002, 27, 1165–1193. [Google Scholar] [CrossRef]
- Yagi, H.; Yamamoto, K.; Aoyagi, T. New liquid chromatography method combining thermo-responsive material and inductive heating via alternating magnetic field. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 876, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Techawanitchai, P.; Yamamoto, K.; Ebara, M.; Aoyagi, T. Surface design with self-heating smart polymers for on–off switchable traps. Sci. Technol. Adv. Mater. 2011, 12, 044609. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Shimizu, T.; Sekine, H.; Ohashi, K.; Kanzaki, M.; Ohki, T.; Nishida, K.; Okano, T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007, 28, 5033–5043. [Google Scholar] [CrossRef] [PubMed]
- Seuring, J.; Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun. 2012, 33, 1898–1920. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P. Bioinspired nanoarchitectonics as emerging drug delivery systems. New J. Chem. 2014, 38, 5149–5163. [Google Scholar] [CrossRef]
- Georges, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. [Google Scholar] [CrossRef]
- Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthedum(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995, 28, 1721–1723. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. “Living”/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572–7573. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Chong, Y.K.; Le, T.P.T.; Moad, G.; Rizzardo, E.; Thang, S.H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process. Macromolecules 1999, 32, 2071–2074. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Lowe, A.B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36. [Google Scholar] [CrossRef]
- Binder, W.H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and material science: An update. Macromol. Rapid Commun. 2008, 29, 952–981. [Google Scholar] [CrossRef]
- Satokawa, Y.; Shikata, T.; Tanaka, F.; Qiu, X.; Winnik, F.M. Hydration and dynamic behavior of a cyclic poly(N-isopropylacrylamide) in aqueous solution: Effects of the polymer chain topology. Macromolecules 2009, 42, 1400–1403. [Google Scholar] [CrossRef]
- Xu, J.; Ye, J.; Liu, S. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 2007, 40, 9103–9110. [Google Scholar] [CrossRef]
- Maeda, T.; Takenouchi, M.; Yamamoto, K.; Aoyagi, T. Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-hydroxyisopropylacrylamide. Biomacromolecules 2006, 7, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Trzebicka, B.; Müller, A.H.E.; Dworak, A.; Tsvetanov, C.B. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci. 2007, 32, 1275–1343. [Google Scholar] [CrossRef]
- Strandman, S.; Zhu, X.X. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog. Polym. Sci. 2015, 42, 154–176. [Google Scholar] [CrossRef]
- Sugihara, S.; Kanaoka, S.; Aoshima, S. Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups: Unique physical gelation. Macromolecules 2005, 38, 1919–1927. [Google Scholar] [CrossRef]
- Aoshima, S.; Sugihara, S. Syntheses of stimuli-responsive block copolymers of vinyl ethers with side oxyethylene groups by living cationic polymerization and their thermosensitive physical gelation. J. Polym. Sci. Polym. Chem. 2000, 38, 3962–3965. [Google Scholar] [CrossRef]
- Seno, K.; Kanaoka, S.; Aoshima, S. Thermosensitive diblock copolymers with designed molecular weight distribution: Synthesis by continuous living cationic polymerization and micellization behavior. J. Polym. Sci. Polym. Chem. 2008, 46, 2212–2221. [Google Scholar] [CrossRef]
- Okabe, S.; Seno, K.; Kanaoka, S.; Aoshima, S.; Shibayama, M. Micellization study on block and gradient copolymer aqueous solutions by DLS and SANS. Macromolecules 2006, 39, 1592–1597. [Google Scholar] [CrossRef]
- Sugihara, S.; Kanaoka, S.; Aoshima, S. Stimuli-responsive ABC triblock copolymers by sequential living cationic copolymerization: Multistage self-assemblies through micellization to open association. J. Polym. Sci. Polym. Chem. 2004, 42, 2601–2611. [Google Scholar] [CrossRef]
- Weiss, J.; Laschewsky, A. Temperature-induced self-assembly of triple-responsive triblock copolymers in aqueous solutions. Langmuir 2011, 27, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, N.; Wu, K.; Zhu, X.X. Solution properties of a thermosensitive triblock copolymer of N-alkyl substituted acrylamides. Langmuir 2009, 25, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhu, X.X.; Luo, J.; Liu, H. Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 2007, 40, 6481–6488. [Google Scholar] [CrossRef]
- Xie, D.; Ye, X.; Ding, Y.; Zhang, G.; Zhao, N.; Wu, K.; Cao, Y.; Zhu, X.X. Multistep thermosensitivity of poly(N-n-propylacrylamide)-block-poly(N-isopropylacrylamide)-block-poly(N,N-ethylmethylacrylamide) triblock terpolymers in aqueous solutions as studied by static and dynamic light scattering. Macromolecules 2009, 42, 2715–2720. [Google Scholar] [CrossRef]
- Kotsuchibashi, Y.; Kuboshima, Y.; Yamamoto, K.; Aoyagi, T. Synthesis and characterization of double thermo-responsive block copolymer consisting N-isopropylacrylamide by atom transfer radical polymerization. J. Polym. Sci. Polym. Chem. 2008, 46, 6142–6150. [Google Scholar] [CrossRef]
- Kotsuchibashi, Y.; Yamamoto, K.; Aoyagi, T. Assembly behavior of double thermo-responsive block copolymers with controlled response temperature in aqueous solution. J. Colloid Interface Sci. 2009, 336, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kotsuchibashi, Y.; Ebara, M.; Yamamoto, K.; Aoyagi, T. Tunable stimuli-responsive self-assembly system that forms and stabilizes nanoparticles by simple mixing and heating/cooling of selected block copolymers. Polym. Chem. 2011, 2, 1362–1367. [Google Scholar] [CrossRef]
- Skrabania, K.; Kristen, J.; Laschewsky, A.; Akdemir, Ö.; Hoth, A.; Lutz, J.-F. Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir 2007, 23, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Böttcherb, C.; Laschewsky, A. Self-assembly of double thermoresponsive block copolymers end-capped with complementary trimethylsilyl groups. Soft Matter 2011, 7, 483–492. [Google Scholar] [CrossRef]
- Wei, H.; Perrier, S.; Dehn, S.; Ravariana, R.; Dehghani, F. One-pot ATRP synthesis of a triple hydrophilic block copolymer with dual LCSTs and its thermo-induced association behaviour. Soft Matter 2012, 8, 9526–9528. [Google Scholar] [CrossRef]
- Pietsch, C.; Mansfeld, U. Thermo-induced self-assembly of responsive poly(DMAEMA-b-DEGMA) block copolymers into multi- and unilamellar vesicles. Macromolecules 2012, 45, 9292–9302. [Google Scholar] [CrossRef]
- Dan, M.; Su, Y.; Xiao, X.; Li, S.; Zhang, W. A new family of thermo-responsive polymers based on poly[N-(4-vinylbenzyl)-N,N-dialkylamine]. Macromolecules 2013, 46, 3137–3146. [Google Scholar] [CrossRef]
- Mertoglu, M.; Garnier, S.; Laschewsky, A.; Skrabania, K.; Storsberg, J. Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer 2005, 46, 7726–7740. [Google Scholar] [CrossRef]
- Lessard, B.H.; Ling, E.J.Y.; Marić, M. Fluorescent, thermoresponsive oligo(ethylene glycol) methacrylate/9-(4-vinylbenzyl)-9H-carbazole copolymers designed with multiple LCSTs via nitroxide mediated controlled radical polymerization. Macromolecules 2012, 45, 1879–1891. [Google Scholar] [CrossRef]
- Su, Y.; Li, Q.; Li, S.; Dan, M.; Huo, F.; Zhang, W. Doubly thermo-responsive brush-linear diblock copolymers and formation of core-shell-corona micelles. Polymer 2014, 55, 1955–1963. [Google Scholar] [CrossRef]
- Dimitrov, P.; Rangelov, S.; Dworak, A.; Haraguchi, N.; Hirao, A.; Tsvetanov, C.B. Triblock and radial star-block copolymers comprosed of poly(ethoxyethyl glycidyl ether), polyglycidol, poly(propylene oxide) and polystyrene obtained by anionic polymerization initiated by Cs initiators. Macromol. Symp. 2004, 215, 127–139. [Google Scholar] [CrossRef]
- Hasan, E.; Zhang, M.; Müller, A.H.E.; Tsvetanov, C.B. Thermoassociative block copolymers of poly(N-isopropylacrylamide) and poly(propylene oxide). J. Macromol. Sci. A 2004, 41A, 467–486. [Google Scholar] [CrossRef]
- Forder, C.; Patrickios, C.S.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution characterization of dihydrophilic block copolymers of methyl vinyl ether and methyl triethylene glycol vinyl ether. Macromolecules 1996, 29, 8160–8169. [Google Scholar] [CrossRef]
- Li, C.; Buurma, N.J.; Haq, I.; Turner, C.; Armes, S.P.; Castelletto, V.; Hamley, I.W.; Lewis, A.L. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 2005, 21, 11026–11033. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. Dual thermo-responsive polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with b-cyclodextrins. Polym. Chem. 2011, 2, 931–940. [Google Scholar] [CrossRef]
- Kotsuchibashi, Y.; Ebara, M.; Yamamoto, K.; Aoyagi, T. “On-off” switching of dynamically controllable self-assembly formation of double-responsive block copolymers with tunable LCSTs. J. Polym. Sci. Polym. Chem. 2010, 48, 4393–4399. [Google Scholar] [CrossRef]
- Weiss, J.; Laschewsky, A. One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers. Macromolecules 2012, 45, 4158–4165. [Google Scholar] [CrossRef]
- Kermagoret, A.; Fustin, C.-A.; Bourguignon, M.; Detrembleur, C.; Jérômea, C.; Debuigne, A. One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs. Polym. Chem. 2013, 4, 2575–2583. [Google Scholar] [CrossRef]
- Thomassin, J.-M.; Mathieu, K.; Kermagoret, A.; Fustin, C.-A.; Jérôme, C.; Debuigne, A. Double thermo-responsive hydrogels from poly(vinylcaprolactam) containing diblock and triblock copolymers. Polym. Chem. 2015, 6, 1856–1864. [Google Scholar] [CrossRef]
- Sugihara, S.; Yamashita, K.; Matsuzuka, K.; Ikeda, I.; Maeda, Y. Transformation of living cationic polymerization of vinyl ethers to RAFT polymerization mediated by a carboxylic RAFT agent. Macromolecules 2012, 45, 794–804. [Google Scholar] [CrossRef]
- Sugihara, S.; Iwata, K.; Miura, S.; Ma’Radzi, A.H.; Maeda, Y. Synthesis of dual thermoresponsive ABA triblock copolymers by both living cationic vinyl polymerization and RAFT polymerization using a dicarboxylic RAFT agent. Polymer 2013, 54, 1043–1052. [Google Scholar] [CrossRef]
- Li, J.; He, W.-D.; Han, S.-C.; Sun, X.-L.; Li, L.-Y.; Zhang, B.-Y. Synthesis and micellization of PSt-PNIPAM-PDMAEMA hetero-arm star polymer with double thermo-responsibility. J. Polym. Sci. Polym. Chem. 2009, 47, 786–796. [Google Scholar] [CrossRef]
- Xu, J.; Luo, S.; Shi, W.; Liu, S. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Kato, I.; Saito, S.; Endo, T. Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 2010, 43, 1289–1298. [Google Scholar] [CrossRef]
- Jochum, F.D.; Roth, P.J.; Kessler, D.; Theato, P. Double thermoresponsive block copolymers featuring a biotin end group. Biomacromolecules 2010, 11, 2432–2439. [Google Scholar] [CrossRef] [PubMed]
- Kotsuchibashi, Y.; Ebara, M.; Idota, N.; Narain, R.; Aoyagi, T. A “smart” approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym. Chem. 2012, 3, 1150–1157. [Google Scholar] [CrossRef]
- Kotsuchibashi, Y.; Ebara, M.; Hoffman, A.S.; Narain, R.; Aoyagi, T. Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polym. Chem. 2015, 6, 1693–1697. [Google Scholar] [CrossRef]
- Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc. 2002, 124, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.; Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A.; Tenhu, H. Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions. Langmuir 2002, 18, 5360–5365. [Google Scholar] [CrossRef]
- Weaver, J.V.M.; Armes, S.P.; Bütün, V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem. Commun. 2002, 2122–2123. [Google Scholar] [CrossRef]
- Maeda, Y.; Mochiduki, H.; Ikeda, I. Hydration changes during thermosensitive association of a block copolymer consisting of LCST and UCST blocks. Macromol. Rapid Commun. 2004, 25, 1330–1334. [Google Scholar] [CrossRef]
- Tian, H.-Y.; Yan, J.-J.; Wang, D.; Gu, C.; You, Y.-Z.; Chen, X.-S. Synthesis of thermo-responsive polymers with both tunable UCST and LCST. Macromol. Rapid Commun. 2011, 32, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tong, X.; Zhao, Y. Diverse thermoresponsive behaviors of uncharged UCST block copolymer micelles in physiological medium. Langmuir 2014, 30, 11433–11441. [Google Scholar] [CrossRef] [PubMed]
- Käfer, F.; Liu, F.; Stahlschmidt, U.; Jérôme, V.; Freitag, R.; Kang, M.; Agarwal, S. LCST and UCST in one: Double thermoresponsive behavior of block copolymers of poly(ethylene glycol) and poly(acrylamide-co-acrylonitrile). Langmuir 2015, 31, 8940–8946. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-J.; Chang, Y.; Deratani, A.; Quemener, D. “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules 2012, 13, 2849–2858. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Wang, P.; Wang, Y.; Tang, L.; Yang, J.; Liu, W.; Li, H.; Wang, G. Double thermoresponsive polybetaine-based ABA triblock copolymers with capability to condense DNA. Polymer 2008, 49, 5322–5328. [Google Scholar] [CrossRef]
- Cummings, C.; Murata, H.; Koepsel, R.; Russell, A.J. Dramatically increased pH and temperature stability of chymotrypsin using dual block polymer-based protein engineering. Biomacromolecules 2014, 15, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Longenecker, R.; Mu, T.; Hanna, M.; Burke, N.A.D.; Stöver, H.D.H. Thermally responsive 2-hydroxyethyl methacrylate polymers: Soluble-insoluble and soluble-insoluble-soluble transitions. Macromolecules 2011, 44, 8962–8971. [Google Scholar] [CrossRef]
- Mori, T.; Nakashima, M.; Fukuda, Y.; Minagawa, K.; Tanaka, M.; Maeda, Y. Soluble-insoluble-soluble transitions of aqueous poly(N-vinylacetamide-co-acrylic acid) solutions. Langmuir 2006, 22, 4336–4342. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huo, F.; Li, Q.; Gao, C.; Su, Y.; Zhang, W. Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization. Polym. Chem. 2014, 5, 3910–3918. [Google Scholar] [CrossRef]
- Roth, P.J.; Davis, T.P.; Lowe, A.B. Comparison between the LCST and UCST transitions of double thermoresponsive diblock copolymers: Insights into the behavior of POEGMA in alcohols. Macromolecules 2012, 45, 3221–3230. [Google Scholar] [CrossRef]
- Su, Y.; Dan, M.; Xiao, X.; Wang, X.; Zhang, W. A new thermo-responsive block copolymer with tunable upper critical solution temperature and lower critical solution temperature in the alcohol/water mixture. J. Polym. Sci. Polym. Chem. 2013, 51, 4399–4412. [Google Scholar] [CrossRef]
- Ueki, T.; Watanabe, M.; Lodge, T.P. Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids. Macromolecules 2009, 42, 1315–1320. [Google Scholar] [CrossRef]
- Lee, H.-N.; Bai, Z.; Newell, N.; Lodge, T.P. Micelle/inverse micelle self-assembly of a PEO-PNIPAm block copolymer in ionic liquids with double thermoresponsivity. Macromolecules 2010, 43, 9522–9528. [Google Scholar] [CrossRef]
- Amemori, S.; Kokado, K.; Sada, K. Fundamental molecular design for precise control of thermoresponsiveness of organic polymers by using ternary systems. J. Am. Chem. Soc. 2012, 134, 8344–8347. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Mao, J.; Wang, D.; Yang, M.; Wang, W.; Bo, S.; Ji, X. Tunable dual-thermoresponsive phase behavior of zwitterionic polysulfobetaine copolymers containing poly(N,N-dimethylaminoethyl methacrylate)-grafted silica nanoparticles in aqueous solution. Macromol. Chem. Phys. 2014, 215, 111–120. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, W.-Y.; Yandi, W.; Shih, Y.-J.; Chu, W.-L.; Liu, Y.-L.; Chu, C.-W.; Ruaan, R.-C.; Higuchi, A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropylacrylamide). Biomacromolecules 2009, 10, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Miura, Y.; Narumi, A.; Shen, X.; Sato, S.; Satoh, T.; Kakuchi, T. Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1117–1124. [Google Scholar] [CrossRef]
- Discher, D.E.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Jiang, X.; Zhao, B. Temperature-induced self-association of doubly thermosensitive diblock copolymers with pendant methoxytris(oxyethylene) groups in dilute aqueous solutions. Macromolecules 2006, 39, 3476–3479. [Google Scholar] [CrossRef]
- Loh, X.J.; Goh, S.H.; Li, J. New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 2007, 8, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Kotsuchibashi, Y.; Takiguchi, T.; Ebara, M.; Aoyagi, T. The effects of the photo-induced proton generation on the assembly formation of dual-temperature and pH responsive block copolymers. Polym. Chem. 2016, in press. [Google Scholar] [CrossRef]
- Benoit, D.; Hawker, C.J.; Huang, E.E.; Lin, Z.; Russell, T.P. One-step formation of functionalized block copolymers. Macromolecules 2000, 33, 1505–1507. [Google Scholar] [CrossRef]
- Zhu, M.-Q.; Wei, L.-H.; Li, M.; Jiang, L.; Du, F.-S.; Li, Z.-C.; Li, F.-M. A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof. Chem. Commun. 2001, 37, 365–366. [Google Scholar] [CrossRef]
- Lessard, B.; Maric, M. One-step poly(styrene-alt-maleic anhydride)-block-poly(styrene) copolymers with highly alternating styrene/maleic anhydride sequences are possible by nitroxide-mediated polymerization. Macromolecules 2010, 43, 879–885. [Google Scholar] [CrossRef]
- Luo, S.; Xu, J.; Zhu, Z.; Wu, C.; Liu, S. Phase transition behavior of unimolecular micelles with thermoresponsive Poly(N-isopropylacrylamide) coronas. J. Phys. Chem. B 2006, 110, 9132–9139. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Chen, J.; Nuopponen, M.; Tenhu, H. Two phase transitions of poly(N-isopropylacrylamide)brushes bound to gold nanoparticles. Langmuir 2004, 20, 4671–4676. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.W.; Napper, D.H. Experimental observation of coil-to-globule type transitions at interfaces. J. Colloid Interface Sci. 1994, 164, 489–494. [Google Scholar] [CrossRef]
- Zhu, P.W.; Napper, D.H. Interfacial coil-to-globule transitions: The effects of molecular weight. Colloids Surf. A 1996, 113, 145–153. [Google Scholar] [CrossRef]
- Oranli, L.; Bahadur, P.; Riess, G. Hydrodynamic studies on micellar solutions of styrene-butadiene block copolymers in selective solvents. Can. J. Chem. 1985, 63, 2691–2696. [Google Scholar] [CrossRef]
- Bütün, V.; Billingham, N.C.; Armes, S.P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution. J. Am. Chem. Soc. 1998, 120, 11818–11819. [Google Scholar] [CrossRef]
- Schulz, D.N.; Peiffer, D.G.; Agarwal, P.K.; Larabee, J.; Kaladas, J.J.; Soni, L.; Handwerker, B.; Garner, R.T. Phase behaviour and solution properties of sulphobetaine polymers. Polymer 1986, 27, 1734–1742. [Google Scholar] [CrossRef]
- Huglin, M.B.; Radwan, M.A. Unperturbed dimensions of a zwitterionic polymethacrylate. Polym. Int. 1991, 26, 97–104. [Google Scholar] [CrossRef]
- Magnusson, J.P.; Khan, A.; Pasparakis, G.; Saeed, A.O.; Wang, W.; Alexander, C. Ion-sensitive “isothermal” responsive polymers prepared in water. J. Am. Chem. Soc. 2008, 130, 10852–10853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Furyk, S.; Sagle, L.B.; Cho, Y.; Bergbreiter, D.E.; Cremer, P.S. Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 2007, 111, 8916–8924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, X.; Yin, Q.; Hu, J.; Liu, H.; Hu, Y. Thermoresponsive diblock copolymer with tunable soluble-insoluble and soluble-insoluble-soluble transitions. Macromol. Rapid Commun. 2013, 34, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hong, J.-D.; Hoogenboom, R. A triple thermoresponsive schizophrenic diblock copolymer. Polym. Chem. 2013, 4, 4322–4325. [Google Scholar] [CrossRef]
- Mishra, V.; Jung, S.-H.; Jeong, H.M.; Lee, H. Thermoresponsive ureido-derivatized polymers: The effect of quaternization on UCST properties. Polym. Chem. 2014, 5, 2411–2416. [Google Scholar] [CrossRef]
- Shimada, N.; Nakayama, M.; Kano, A.; Maruyama, A. Design of UCST polymers for chilling capture of proteins. Biomacromolecules 2013, 14, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Glatzel, S.; Laschewsky, A.; Lutz, J.-F. Well-defined uncharged polymers with a sharp UCST in water and in physiological milieu. Macromolecules 2011, 44, 413–415. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. First example of a universal and cost-effective approach: Polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 2012, 45, 3910–3918. [Google Scholar] [CrossRef]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Ueki, T.; Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and opportunities. Macromolecules 2008, 41, 3739–3749. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, S. Stimuli-responsive self-assembly of a naphthalene diimide by orthogonal hydrogen bonding and its coassembly with a pyrene derivative by a pseudo-intramolecular charge-transfer interaction. Angew. Chem. Int. Ed. 2014, 53, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Jonas, U.; Mateescu, A.; Knoll, W.; Dostalek, J. Active control of SPR by thermoresponsive hydrogels for biosensor applications. J. Phys. Chem. C 2013, 117, 11705–11712. [Google Scholar] [CrossRef] [PubMed]
- Gehan, H.; Mangeney, C.; Aubard, J.; Lévi, G.; Hohenau, A.; Krenn, J.R.; Lacaze, E.; Félidj, N. Design and optical properties of active polymer-coated plasmonic nanostructures. J. Phys. Chem. Lett. 2011, 2, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Paulus, A.S.; Heinzler, R.; Ooi, H.W.; Franzreb, M. Temperature-switchable agglomeration of magnetic particles designed for continuous separation processes in biotechnology. ACS Appl. Mater. Interfaces 2015, 7, 14279–14287. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Wang, K.; He, X.; Zhao, X.J.; Drake, T.; Wang, L.; Bagwe, R.P. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 2004, 24, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Ow, H.; Wiesner, U. Fluorescent core–shell silica nanoparticles: Towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev. 2006, 35, 1028–1042. [Google Scholar] [CrossRef] [PubMed]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, 2222–2226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chao, T.; Chen, S.; Jiang, S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, 10072–10077. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug. Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef]
- Ahmed, M.; Wattanaarsakit, P.; Narain, R. Recent advances in the preparation of glycopolymer bioconjugates. Eur. Polym. J. 2013, 49, 3010–3033. [Google Scholar] [CrossRef]
- Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S.; Stayton, P.S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. 2007, 32, 922–932. [Google Scholar] [CrossRef]
- Li, W.; Zhao, H.; Qian, W.; Li, H.; Zhang, L.; Ye, Z.; Zhang, G.; Xia, M.; Li, J.; Gao, J.; et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 2012, 33, 5349–5362. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Chen, H.; Li, J.; Huang, Q.; Gupte, M.J.; Liu, H.; Song, Y.; Ge, Z. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials 2015, 52, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jiang, W. Self-assembly of the AB/BC diblock copolymer mixture based on hydrogen bonding in a selective solvent: A Monte Carlo study. J. Phys. Chem. B 2011, 115, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
- Léonforte, F.; Müller, M. Poly(N-isopropylacrylamide)-based mixed brushes: A computer simulation study. ACS Appl. Mater. Interfaces 2015, 7, 12450–12462. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.-F.; Ouchi, M.; Liu, D.R.; Sawamoto, M. Sequence-controlled polymers. Science 2013, 341, 1238149. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zuckermann, R.N. Peptoid polymers: A highly designable bioinspired material. ACS Nano 2013, 7, 4715–4732. [Google Scholar] [CrossRef] [PubMed]
- Bates, F.S.; Hillmyer, M.A.; Lodge, T.P.; Bates, C.M.; Delaney, K.T.; Fredrickson, G.H. Multiblock polymers: Panacea or Pandora’s Box? Science 2012, 336, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D.A.; Becer, C.R.; Haddleton, D.M. Sequence-controlled multi-block glycopolymers to inhibit DC-SIGN-gp120 binding. Angew. Chem. Int. Ed. 2013, 52, 4435–4439. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.; Soeriyadi, A.H.; Zetterlund, P.B.; Whittaker, M.R. Synthesis of complex multiblock copolymers via a simple iterative Cu(0)-mediated radical polymerization approach. Macromolecules 2011, 44, 8028–8033. [Google Scholar] [CrossRef]
LCST-LCST type block copolymers in aqueous solution | Ref. |
Poly(15)-b-Poly(16) | [26] |
Poly(16)-b-Poly(14) | [26,27] |
Poly(15)-b-Poly(14) | [26,28,29] |
Poly(16)-b-Poly(14)-b-Poly(15) | [30] |
Poly(2)-b-Poly(18)-b-Poly(3) | [31] |
Poly(2)-b-Poly(3)-b-Poly(18) | [31] |
Poly(3)-b-Poly(2)-b-Poly(18) | [31] |
Poly(3)-b-Poly(1)-b-Poly(4) | [32,33,34] |
Poly(3)-b-Poly(1) | [32,34] |
Poly(1)-b-Poly(10) | [35,36,37] |
Poly(1)-b-Poly(6)-b-Poly(DMAAm) | [38] |
Poly(1)-b-Poly(DMAAm)-b-Poly(6) | [38] |
Poly(DMAAm)-b-Poly(1)-b-Poly(6) | [38] |
Poly(3)-b-Poly(2) | [39] |
PEG-b-Poly(1)-b-Poly(12) | [40] |
Poly(23)-b-Poly(19) | [41] |
Poly(25)-b-Poly(26)-b-Poly(25) | [42] |
Poly(1)-b-Poly(6) | [43] |
Poly(21)-b-Poly(21) | [44] |
Poly(28)-b-Poly(1) | [45] |
Poly(35)-b-Poly(33)-b-Poly(35) | [46] |
Poly(1)-b-Poly(33)-b-Poly(1) | [47] |
Poly(13)-b-Poly(17) | [48] |
Poly(33)-b-Poly(MPC)-b-Poly(1) | [49] |
Poly(1)-b-Poly(34)-b-Poly(1) | [50] |
Poly(1)-b-Poly(11) | [51] |
Poly(29)-b-Poly(27) | [52] |
Poly(30)-b-Poly(31) | [53] |
Poly(30)-b-Poly(32) | [54] |
Poly(30)-b-Poly(32)-b-Poly(30) | [54] |
Poly(1)-b-Poly(14) | [55] |
Poly(14)-b-Poly(1)-b-Poly(14) | [56] |
Poly(St)-branch-poly(1)-poly(23) | [57] |
Poly(1)-b-Poly(23) | [58] |
Poly(7)-b-Poly(8) | [59] |
Poly(20)-b-Poly(9) | [60] |
Poly(10)-b-Poly(11) | [61] |
Poly(21)-b-Poly(22) | [62] |
LCST-UCST type block copolymers in aqueous solution | Ref. |
Poly(1)-b-Poly(A) | [63,64] |
Poly(24)-b-Poly(C) | [65] |
Poly(5)-b-Poly(C) | [66] |
Poly(7)-b-Poly(D) | [59] |
Poly(21)-b-Poly(E) | [67] |
Poly(23)-b-Poly(F) | [68] |
PEG-b-Poly(F) | [69] |
Poly(1)-b-Poly(C) | [70] |
Poly(A)-b-Poly(19)-b-Poly(A) | [71] |
Poly(B)-b-Poly(1) | [72] |
Other types of LCST-UCST type copolymers | Ref. |
Poly(G): in aqueous solution | [73] |
Poly(H): in aqueous solution | [74] |
Poly(I): in alcohol | [75] |
Poly(J): in mixture solution of water/alcohol | [76] |
Poly(K): in mixture solution of water/alcohol | [77] |
Poly(M): in ionic liquid | [78] |
Poly(L): in ionic liquid | [79] |
Poly(P): in dichloroethane | [80] |
Poly(O): in aqueous solution | [81] |
Poly(N): in aqueous solution | [82] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsuchibashi, Y.; Ebara, M.; Aoyagi, T.; Narain, R. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications. Polymers 2016, 8, 380. https://doi.org/10.3390/polym8110380
Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R. Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications. Polymers. 2016; 8(11):380. https://doi.org/10.3390/polym8110380
Chicago/Turabian StyleKotsuchibashi, Yohei, Mitsuhiro Ebara, Takao Aoyagi, and Ravin Narain. 2016. "Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications" Polymers 8, no. 11: 380. https://doi.org/10.3390/polym8110380
APA StyleKotsuchibashi, Y., Ebara, M., Aoyagi, T., & Narain, R. (2016). Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications. Polymers, 8(11), 380. https://doi.org/10.3390/polym8110380