Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands
Abstract
:1. Introduction
2. Synthesis and Assembly of Metal/Metal Oxide Nanoparticles
- The NPs are formed in the presence of the polymer ligands (in situ formation)
- The small-molecular ligands are exchanged with polymer ligands on pre-formed NPs (ligand exchange)
Synthesis of Thioether Polymer Ligands
3. Preparation of NPs Using Water Soluble Thioether End Functionalized Polymeric Ligands
3.1. Characteristic Properties of NPs Capped with Multifunctional Water Soluble Polymeric Ligands (MWP)
3.2. Control Over Particle Size and Morphology
3.3. Stability of Nanoparticles
3.4. Post-Synthesis Functionalization of Nanoparticles
4. Organic Medium Soluble NPs
5. Magnetic Nanoparticles
6. Fluorescent Metal Nanoclusters
7. Applications of Nanoparticles/Clusters Capped with Thioether Based Ligands
7.1. Bio-Imaging by MWPs Functionalized Nanoparticles
7.2. Detection of Metal Ions by MWPs Functionalized Nanoparticles
7.3. Drug Delivery by MWPs Functionalized Nanoparticles
7.4. MWPs Functionalized Nanoparticles as MRI Contrast Agents
7.5. Hyperthermic Tumor Therapy
7.6. Nanoparticles as Catalysts (Selected Examples)
8. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
MNPs | Metal nanoparticles |
MNCs | Metal nanoclusters |
MRI | Magnetic resonance imaging |
MIONs | Magnetic iron oxide nanoparticles |
MFH | Magnetic fluid hyperthemia |
MWPs | Multifunctional water soluble polymer ligands |
PEG | Polyethylene glycol |
SAM | Self assembled monolayers |
DDT | Dodecanethiol |
PVAc | Polyvinyl acetate |
PMAA | Polymethyl acrylic acid |
PVP | Polyvinyl pyrolidone |
PVA | Polyvinylacetate |
PEI | Polyethyleneimine |
PAMAM | poly(amidoamine) dendrimers |
DMAP | 4-(dimethylamino)pyridine |
CTAB | Cetyl trimethylammonium bromide |
MNPs | Magnetic nanoparticles |
TOAB | Tetraoctyl ammonium bromide |
PtBMP | poly(t-butyl methacrylate) |
PBMA | poly(n-butyl methacrylate) |
DOX | Doxorubicin |
PBS | Phosphate buffer saline |
CD | Cyclodextrin |
DLS | Dynamic light scattering |
References
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal.Chem. 2008, 391, 2469–2495. [Google Scholar] [CrossRef] [PubMed]
- Mathias Brust, C.J.K. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surf. A 2002, 202, 175–186. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun. 2012, 48, 567–569. [Google Scholar] [CrossRef]
- Huang, X.; Li, B.; Li, L.; Zhang, H.; Majeed, I.; Hussain, I.; Tan, B. Facile preparation of highly blue fluorescent metal nanoclusters in organic media. J. Phy. Chem. C 2012, 116, 448–455. [Google Scholar] [CrossRef]
- Majeed, M.I.; Lu, Q.; Yan, W.; Li, Z.; Hussain, I.; Tahir, M.N.; Tremel, W.; Tan, B. Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: Enhanced in vitro therapeutic efficacy of doxorubicin and mion conjugates. J. Mater. Chem. B 2013, 1, 2874–2884. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Bastus, N.G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, T.; Kunitake, T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Colloids Surf. A 1999, 149, 193–199. [Google Scholar] [CrossRef]
- Lin, C.-A.J.; Yang, T.-Y.; Lee, C.-H.; Huang, S.H.; Sperling, R.A.; Zanella, M.; Li, J.K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Goulet, P.J.G.; Lennox, R.B. New insights into brust-schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 2010, 132, 9582–9584. [Google Scholar] [CrossRef] [PubMed]
- Van Berkel, K.Y.; Hawker, C.J. Tailored composite polymer-metal nanoparticles by miniemulsion polymerization and thiol-ene functionalization. J. Polym. Sci. A 2010, 48, 1594–1606. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.B. Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 2007, 47, 197–215. [Google Scholar] [CrossRef]
- Mossmer, S.; Spatz, J.P.; Möller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Solution behavior of poly (styrene)-block-poly (2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 2000, 33, 4791–4798. [Google Scholar] [CrossRef]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, M.S.; Krack, M.; Aleksandrovic, V.; Kornowski, A.; Forster, S.; Weller, H. Tailor-made ligands for biocompatible nanoparticles. Angew. Chem. 2006, 45, 6577–6580. [Google Scholar] [CrossRef] [PubMed]
- Bronstein, L.M.; Seregina, M.V.; Platonova, O.A.; Kabachii, Y.A.; Chernyshov, D.M.; Ezernitskaya, M.G.; Dubrovina, L.V.; Bragina, T.P.; Valetsky, P.M. Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene–polybutadiene block copolymers; micellization of diblock copolymers due to complexation. Macromol. Chem. Phys. 1998, 199, 1357–1363. [Google Scholar] [CrossRef]
- Fleming, M.S.; Walt, D.R. Stability and exchange studies of alkanethiol monolayers on gold-nanoparticle-coated silica microspheres. Langmuir 2001, 17, 4836–4843. [Google Scholar] [CrossRef]
- Li, X.-M.; Huskens, J.; Reinhoudt, D.N. Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanofabrication technologies. J. Mater. Chem. 2004, 14, 2954–2971. [Google Scholar] [CrossRef]
- Stouffer, J.M.; McCarthy, T.J. Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces. Macromolecules 1988, 21, 1204–1208. [Google Scholar] [CrossRef]
- Porter, L.A.; Ji, D.; Westcott, S.L.; Graupe, M.; Czernuszewicz, R.S.; Halas, N.J.; Lee, T.R. Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 1998, 14, 7378–7386. [Google Scholar] [CrossRef]
- Stellacci, F.; Bauer, C.A.; Meyer-Friedrichsen, T.; Wenseleers, W.; Marder, S.R.; Perry, J.W. Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Zelakiewicz, B.S.; Lica, G.C.; Deacon, M.L.; Tong, Y. 13C NMR and infrared evidence of a dioctyl-disulfide structure on octanethiol-protected palladium nanoparticle surfaces. J. Am. Chem. Soc. 2004, 126, 10053–10058. [Google Scholar] [CrossRef] [PubMed]
- Maye, M.M.; Chun, S.C.; Han, L.; Rabinovich, D.; Zhong, C.-J. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem. Soc. 2002, 124, 4958–4959. [Google Scholar] [CrossRef] [PubMed]
- Tzhayik, O.; Sawant, P.; Efrima, S.; Kovalev, E.; Klug, J. Xanthate capping of silver, copper, and gold colloids. Langmuir 2002, 18, 3364–3369. [Google Scholar] [CrossRef]
- Maye, M.M.; Luo, J.; Lim, I.I.S.; Han, L.; Kariuki, N.N.; Rabinovich, D.; Liu, T.; Zhong, C.J. Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc 2003, 125, 9906–9907. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, B.; Zhang, H.; Hussain, I.; Liang, L.; Tan, B. Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands. Nanoscale 2011, 3, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, M.; Freemantle, R.G.; Obare, S.O. Monodisperse thioether-stabilized palladium nanoparticles: Synthesis, characterization, and reactivity. Chem. Mater. 2007, 19, 3464–3471. [Google Scholar] [CrossRef]
- Mathew, M.; Maye; Lim, I.-I.S.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T.; Zhon, C.-J. Mediator-template assembly of nanoparticles. J. Am. Chem. Soc 2005, 127, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Chairam, S.; Somsook, E. Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters. J. Magn. Magn. Mater. 2008, 320, 2039–2043. [Google Scholar] [CrossRef]
- Berry, C.C.; Wells, S.; Charles, S.; Curtis, A.S. Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 2003, 24, 4551–4557. [Google Scholar] [CrossRef]
- Park, J.-H.I.; Lee, K.-H.; Kim, S.-H.; Lee, D.-H.; Lee, D.-Y.; Kim, Y.-K.; Kim, K.-M.; Kim, K.-N. Preparation and characterization of magnetic chitosan particles for hyperthermia application. J. Magn. Magn. Mater. 2005, 293, 328–333. [Google Scholar] [CrossRef]
- Smith, A.M.; Duan, H.; Rhyner, M.N.; Ruan, G.; Nie, S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys 2006, 8, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Nativo, P.; Prior, I.A.; Brust, M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2008, 2, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Han, G.; Fernández, J.M.; Kim, B.-j.; Forbes, N.S.; Rotello, V.M. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 2006, 128, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Jong, M.R.d.; Inoue, K.; Shinkai, S.; Huskens, J.; Reinhoudt, D.N. Formation of gold colloids using thioether derivatives as stabilizing ligands. J. Mater. Chem. 2001, 11, 1919–1923. [Google Scholar] [CrossRef]
- Hussain, I.; Graham, S.; Wang, Z.; Tan, B.; Sherrington, D.C.; Rannard, S.P.; Cooper, A.I.; Brust, M. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J. Am. Chem Soc. 2005, 127, 16398–16399. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, B.; Hussain, I.; Schaeffer, N.; Wyatt, M.F.; Brust, M.; Cooper, A.I. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 2007, 23, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Du, K.; Fang, C.; Bhattarai, N.; Veiseh, O.; Kievit, F.; Stephen, Z.; Lee, D.; Ellenbogen, R.G.; Ratner, B. Peg-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: Their physicochemical properties and function in vivo. ACS Nano 2010, 4, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Liu, C.-J.; Wang, C.-L.; Hua, T.-E.; Obliosca, J.M.; Lee, K.H.; Hwu, Y.; Yang, C.-S.; Liu, R.-S.; Lin, H.-M.; et al. Optimizing the size and surface properties of polyethylene glycol (PEG)–gold nanoparticles by intense x-ray irradiation. J. Phys. D 2008, 41, 195301–195308. [Google Scholar] [CrossRef]
- Hu, F.; Jia, Q.; Li, Y.; Gao, M. Facile synthesis of ultrasmall pegylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Nanotechnology 2011, 22, 245604–245610. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Simchi, A.; Imani, M. Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J. Phy. Chem. C 2009, 113, 9573–9580. [Google Scholar] [CrossRef]
- Makhluf, S.B.; AbuMukh, R.; Rubinstein, S.; Breitbart, H.; Gedanken, A. Modified PVA–Fe3O4 nanoparticles as protein carriers into sperm cells. Small 2008, 4, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Gokhale, R.; Subbarao, V.; Singh, N.; Jun, K.-W.; Das, B. Synthesis and optical properties of CdS/PVA nanocomposites. Mater. Chem. Phys. 2005, 94, 454–459. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.Y.; Ma, S.; Zhang, Y.J.; Zhao, X.; Zhang, X.D.; Zhang, Z.D. Synthesis of PVP-coated ultra-small fe3o4 nanoparticles as a mri contrast agent. J. Mater. Sci. Mater. Med. 2010, 21, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Arshi, N.; Ahmed, F.; Kumar, S.; Anwar, M.S.; Koo, B.H.; Lee, C.G. Comparative study of the Ag/PVP nanocomposites synthesized in water and in ethylene glycol. Curr. Appl. Phys. 2011, 11, 346–349. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lee, S.-H.; Xu, C.; Xie, J.; Lee, J.-H.; Wu, B.; Leen Koh, A.; Wang, X.; Sinclair, R.; Wang, S.X.; et al. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 2008, 19, 165101–165106. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Yang, W.; Ren, Q.; Lu, D. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine). Nanotechnology 2009, 20, 075101–075111. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, L.; Ma, Y.; Li, X.; Gu, H. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2010, 2, 365–372. [Google Scholar] [CrossRef]
- McBain, S.C.; Yiu, H.H.P.; El Haj, A.; Dobson, J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem. 2007, 17, 2561–2565. [Google Scholar] [CrossRef]
- Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 2010, 31, 6317–6324. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M.J.; Laromaine, A.; McComb, D.W.; Stevens, M.M.; Wang, Y.; Petit, L.; Barentin, C.; et al. Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1–1.7 nm size range. Chem. Commun. 2008, 3986–3988. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tan, B.; Allix, M.; Cooper, A.I.; Rosseinsky, M.J. Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 2008, 4, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Fabris, L.; Antonello, S.; Armelao, L.; Donkers, R.L.; Polo, F.; Toniolo, C.; Maran, F. Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc. 2005, 128, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.Y.; Chen, J.X.; Wang, H.Y.; Li, C.; Chang, C.; Zhang, X.Z.; Zhuo, R.X. Core−shell nanosized assemblies mediated by the α−β cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 2010, 4, 4211–4219. [Google Scholar] [CrossRef] [PubMed]
- Levy, R. Peptide-capped gold nanoparticles: Towards artificial proteins. Chem. biochem. 2006, 7, 1141–1145. [Google Scholar]
- Kim, E.H.; Ahn, Y.; Lee, H.S. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J. Alloys Compd. 2007, 434–435, 633–636. [Google Scholar] [CrossRef]
- Lu, L.T.; Tung, L.D.; Robinson, I.; Ung, D.; Tan, B.; Long, J.; Cooper, A.I.; Fernig, D.G.; Thanh, N.T.K. Size and shape control for water-soluble magnetic cobalt nanoparticles using polymer ligands. J. Mater. Chem. 2008, 18, 2453–2458. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [PubMed]
- Rouhana, L.L.; Jaber, J.A.; Schlenoff, J.B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir 2007, 23, 12799–12801. [Google Scholar] [CrossRef] [PubMed]
- Zyuzin, M.V.; Honold, T.; Carregal-Romero, S.; Kantner, K.; Karg, M.; Parak, W.J. Influence of temperature on the colloidal stability of polymer-coated gold nanoparticles in cell culture media. Small 2016. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, W.; Wei, D.X.; Chi, L.W.; Zhong, J.F. Stabilization and its mechanisms of the metal nanoparticles/polymer systems. Prog.Chem. 2006, 18, 290–297. [Google Scholar]
- Xin, H.; Hui, Z.; Liyun, L.; Bien, T. Preparation of nanoparticles with multi-functional water-soluble polymer ligands. Prog.Chem. 2010, 22, 953–961. [Google Scholar]
- Bourlinos, A.; Bakandritsos, A.; Georgakilas, V.; Petridis, D. Surface modification of ultrafine magnetic iron oxide particles. Chem. Mater. 2002, 14, 3226–3228. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H. “Pulling” nanoparticles into water: Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 2003, 3, 1555–1559. [Google Scholar] [CrossRef]
- Latham, A.H.; Williams, M.E. Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester−peg−thiol ligands. Langmuir 2006, 22, 4319–4326. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I.C.; Moon, W.K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. 2008, 47, 8438–8441. [Google Scholar] [CrossRef] [PubMed]
- Pazos-Pérez, N.; Gao, Y.; Hilgendorff, M.; Irsen, S.; Pérez-Juste, J.; Spasova, M.; Farle, M.; Liz-Marzán, L.M.; Giersig, M. Magnetic-noble metal nanocomposites with morphology-dependent optical response. Chem. Mater. 2007, 19, 4415–4422. [Google Scholar] [CrossRef]
- Huh, Y.-M.; Jun, Y.-W.; Song, H.-T.; Kim, S.; Choi, J.-S.; Lee, J.-H.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127, 12387–12391. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.; Krishnan, K.M. Phase transfer of highly monodisperse iron oxide nanocrystals with pluronic F127 for biomedical applications. J. Magn. Magn. Mater. 2007, 311, 59–62. [Google Scholar] [CrossRef]
- Vericat, C.; Vela, M.; Salvarezza, R. Self-assembled monolayers of alkanethiols on Au (111): Surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 2005, 7, 3258–3268. [Google Scholar] [CrossRef] [PubMed]
- Na, H.B.; Song, I.C.; Hyeon, T. Inorganic nanoparticles for mri contrast agents. Adv. Mater. 2009, 21, 2133–2148. [Google Scholar] [CrossRef]
- Li, Z.; Yi, P.W.; Sun, Q.; Lei, H.; Li Zhao, H.; Zhu, Z.H.; Smith, S.C.; Lan, M.B.; Lu, G.Q.M. Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater. 2012, 22, 2387–2393. [Google Scholar] [CrossRef]
- Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, B.R.; Gustafsson, B.r.; Kukis, D.L.; Louie, A.Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjugate Chem. 2008, 19, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Hachani, R.; Lowdell, M.; Birchall, M.; Hervault, A.; Mertz, D.; Begin-Colin, S.; Thanh, N.T. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential mri contrast agents. Nanoscale 2016, 8, 3278–3287. [Google Scholar] [CrossRef] [PubMed]
- David A.J. Hermana, S.C.; McGratha, Andrew J.; McVeya, Benjamin F.P.; Matthias Leina, R.D.T. How to choose a precursor for decomposition solution-phase synthesis: The case of iron nanoparticles. Nanoscale 2015, 7, 5951–5954. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.H.; Salabas, E.E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Wang, L.; Yan, G.; Gao, J.m.; Yu, H.; Zhang, L. Recent research progress on the preparation and application of magnetic nanospheres. Polym. Int. 2011, 60, 976–994. [Google Scholar] [CrossRef]
- Rozenberg, B.; Tenne, R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Q.; Zhu, Y.; Tan, B.; Xu, Z.P.; Dou, S.X. Ultra-small fluorescent inorganic nanoparticles for bioimaging. J. Mater. Chem. B 2014, 2, 2793–2818. [Google Scholar] [CrossRef]
- Shang, L.; Dong, S.; Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418. [Google Scholar] [CrossRef]
- Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Z.; Zhang, H.; Zhang, S.; Majeed, I.; Tan, B. Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale 2013, 5, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Petty, J.T.; Dickson, R.M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem Soc. 2003, 125, 7780–7781. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, C.; Dickson, R.M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402–077404. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Dickson, R.M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Dickson, R.M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem Soc. 2002, 124, 13982–13983. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Andersson, T.E.; Rissing, C.; Yang, S.; Chen, S.; Son, D.Y. Irradiation- and thermoinduced synthesis of ag nanoparticles within amphiphilic carbosilane–thioether dendrimers. J. Mater. Chem. B 2013, 1, 116–122. [Google Scholar] [CrossRef]
- Huang, X.; Luo, Y.; Li, Z.; Li, B.; Zhang, H.; Li, L.; Majeed, I.; Zou, P.; Tan, B. Biolabeling hematopoietic system cells using near-infrared fluorescent gold nanoclusters. J. Phys. Chem. C 2011, 115, 16753–16763. [Google Scholar] [CrossRef]
- Shang, L.; Dong, S. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem.Commun. 2008, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, K.; Santra, S.; Zhao, X.; Hilliard, L.R.; Smith, J.E.; Wu, Y.; Tan, W. Watching silica nanoparticles glow in the biological world. Anal. Chem. 2006, 78, 646–654. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P.G.; Cao, L.; Meziani, M.J.; Liu, J.-H.; Liu, Y.; Chen, M. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110–18114. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.I.; Miyazaki, J.; Tiwari, D.K.; Jin, T.; Inouye, Y. Fluorescent platinum nanoclusters: Synthesis, purification, characterization, and application to bioimaging. Angew. Chemie. 2011, 123, 451–455. [Google Scholar] [CrossRef]
- Qin, Y.; Sun, L.; Li, X.; Cao, Q.; Wang, H.; Tang, X.; Ye, L. Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: Effect of loading mode on therapeutic efficacy. J. Mater. Chem. 2011, 21, 18003–18010. [Google Scholar] [CrossRef]
- Skovsgaard, T.; Nissen, N.I. Membrane transport of anthracyclines. Clin. Pharmacol. Ther. 1982, 18, 293–311. [Google Scholar] [CrossRef]
- Gu, Y.-J.; Cheng, J.; Man, C.W.-Y.; Wong, W.-T.; Cheng, S.H. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed. Nanotech. Biol. Med. 2012, 8, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, A.; Hed, Y.; Öberg, K.; Sellborn, A.; Fink, H.; Löwenhielm, P.; Kelly, J.; Malkoch, M.; Berglin, M. Self-assembled arrays of dendrimer–gold-nanoparticle hybrids for functional cell studies. Angew. Chem. Int. Ed. 2011, 50, 3450–3453. [Google Scholar] [CrossRef] [PubMed]
- Javed, I.; Hussain, S.Z.; Ullah, I.; Khan, I.; Ateeq, M.; Shahnaz, G.; ur Rehman, H.; Razi, M.T.; Shah, M.R.; Hussain, I. Synthesis, characterization and evaluation of lecithin-based nanocarriers for the enhanced pharmacological and oral pharmacokinetic profile of amphotericin b. J. Mater. Chem. B 2015, 3, 8359–8365. [Google Scholar] [CrossRef]
- Prasad, A. Making images/making bodies: Visibilizing and disciplining through magnetic resonance imaging (MRI). Sci. Technol. Human Values 2005, 30, 291–316. [Google Scholar] [CrossRef]
- Lee, J.-H.; Huh, Y.-M.; Jun, Y.-W.; Seo, J.-W.; Jang, J.-T.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ng, Y.W.; Chen, Y.; Shuter, B.; Yi, J.; Ding, J.; Wang, S.; Feng, S.-S. Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging. Adv. Funct. Mater. 2008, 18, 308–318. [Google Scholar] [CrossRef]
- Jang, J.t.; Nah, H.; Lee, J.H.; Moon, S.H.; Kim, M.G.; Cheon, J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. 2009, 121, 1260–1264. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 2003, 36, R167. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, W.-F.; Sun, H.-B. Multifunctional superparamagnetic iron oxide nanoparticles: Design, synthesis and biomedical photonic applications. Nanoscale 2013, 5, 7664–7684. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.-W.; Huh, Y.-M.; Choi, J.-S.; Lee, J.-H.; Song, H.-T.; Kim, S.; Kim, S.; Yoon, S.; Kim, K.-S.; Shin, J.-S. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127, 5732–5733. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale 2015, 7, 9174–9184. [Google Scholar] [CrossRef] [PubMed]
- Robinson, I.; Alexander, C.; Lu, L.T.; Tung, L.D.; Fernig, D.G.; Thanh, N.T. One-step synthesis of monodisperse water-soluble ‘dual-responsive’magnetic nanoparticles. Chem. Commun. 2007, 4602–4604. [Google Scholar]
- Josephson, L.; Kircher, M.F.; Mahmood, U.; Tang, Y.; Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chem. 2002, 13, 554–560. [Google Scholar] [CrossRef]
- Hervault, A.; Thanh, N.T. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014, 6, 11553–11573. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.M.; Thorat, N.D.; Shete, P.B.; Otari, S.V.; Tiwale, B.M.; Pawar, S.H. In vitro hyperthermia with improved colloidal stability and enhanced sar of magnetic core/shell nanostructures. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, J.; Aifantis, K.E.; Fan, Y.; Feng, Q.; Cui, F.Z.; Watari, F. Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A 2016. [Google Scholar] [CrossRef] [PubMed]
- Hermans, I.; Jacobs, P.A.; Peeters, J. To the core of autocatalysis in cyclohexane autoxidation. Chem. Eur. J. 2006, 12, 4229–4240. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.-Y.; Yuan, Y.-J.; Xiao, J.; Guo, C.-C.; Liu, Q.; Tan, Z.; Li, Q.-H. Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. JPP. 2008, 12, 27–34. [Google Scholar] [CrossRef]
- Ricci, M.; Bianchi, D.; Bortolo, R. Towards the direct oxidation of benzene to phenol. In Sustainable Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 507–528. [Google Scholar]
- Guo, C.-C.; Chu, M.-F.; Liu, Q.; Liu, Y.; Guo, D.-C.; Liu, X.-Q. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Appl. Catal. A 2003, 246, 303–309. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Methods and tools of sustainable industrial chemistry: Catalysis. In Sustainable Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 73–198. [Google Scholar]
- Spinace, E.V.; Pastore, H.O.; Schuchardt, U. Cyclohexane oxidation catalyzed by titanium silicalite (TS-1): Overoxidation and comparison with other oxidation systems. J. Catal. 1995, 157, 631–635. [Google Scholar] [CrossRef]
- Zahedi-Niaki, M.H.; Kapoor, M.P.; Kaliaguine, S. H2O2 oxidation and epoxidation of hydrocarbons and alcohols over titanium aluminophosphates TAPO-5, TAPO-11, and TAPO-36. J. Catal. 1998, 177, 231–239. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Shi, Y.; Mao, D.; Lu, G. Selective oxidation of cyclohexane by oxygen in a solvent-free system over lanthanide-containing alpo-5. Catal. Lett. 2010, 137, 180–189. [Google Scholar] [CrossRef]
- Perkas, N.; Koltypin, Y.; Palchik, O.; Gedanken, A.; Chandrasekaran, S. Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions. Appl. Catal. A 2001, 209, 125–130. [Google Scholar] [CrossRef]
- Liu, R.; Huang, H.; Li, H.; Liu, Y.; Zhong, J.; Li, Y.; Zhang, S.; Kang, Z. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 2013, 4, 328–336. [Google Scholar] [CrossRef]
- Zhu, K.; Hu, J.; Richards, R. Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal. Lett. 2005, 100, 195–199. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Richards, R. Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust “green” catalyst for n-alkane oxidation. J. Am. Chem.Soc. 2008, 131, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lee, B.; Dai, S.; Overbury, S.H. Coassembly synthesis of ordered mesoporous silica materials containing au nanoparticles. Langmuir 2003, 19, 3974–3980. [Google Scholar] [CrossRef]
- ZajifáHussain, S. In situ growth of gold nanoparticles on latent fingerprints—from forensic applications to inkjet printed nanoparticle patterns. Nanoscale 2010, 2, 2575–2578. [Google Scholar]
- Wu, P.; Xiong, Z.; Loh, K.P.; Zhao, X. Selective oxidation of cyclohexane over gold nanoparticles supported on mesoporous silica prepared in the presence of thioether functionality. Catal. Sci. Tech. 2011, 1, 285–294. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razzaque, S.; Hussain, S.Z.; Hussain, I.; Tan, B. Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands. Polymers 2016, 8, 156. https://doi.org/10.3390/polym8040156
Razzaque S, Hussain SZ, Hussain I, Tan B. Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands. Polymers. 2016; 8(4):156. https://doi.org/10.3390/polym8040156
Chicago/Turabian StyleRazzaque, Shumaila, Syed Zajif Hussain, Irshad Hussain, and Bien Tan. 2016. "Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands" Polymers 8, no. 4: 156. https://doi.org/10.3390/polym8040156
APA StyleRazzaque, S., Hussain, S. Z., Hussain, I., & Tan, B. (2016). Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands. Polymers, 8(4), 156. https://doi.org/10.3390/polym8040156