Development of Conjugated Polymers for Memory Device Applications
Abstract
:1. Introduction
1.1. Conjugated Polymers (CPs)
1.2. Resistor-Type Electronic Memories
1.2.1. Operation Mechanism
Charge Transfer (CT)
Space Charge Traps
Filament Conduction
2. CPs for Volatile Memory Devices
2.1. Dynamic Random Access Memory (DRAM) Properties
2.2. Static Random Access Memory (SRAM) Properties
3. CPs for Non-Volatile Memory Devices
3.1. WORM Properties
3.2. Flash Properties
3.3. Negative Differential Resistance (NDR) Properties
4. Effects of the Molecular Design on Volatility
4.1. Donor Effect
4.2. Acceptor Effect
4.3. Thickness Effect
5. CPs Containing Metal Complexes
6. Flexible CP-Based Memory Devices
7. Conclusions and Perspectives
Conflicts of Interest
References
- Roncali, J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications. Chem. Rev. 1992, 92, 711. [Google Scholar] [CrossRef]
- Vogel, H.; Marvel, C.S. Polybenzimidazoles, new thermally stable polymers. J. Polym. Sci. 1961, 50, 511. [Google Scholar] [CrossRef]
- Skotheim, T. Handbook of Conducting Polymers; Marcel Dekker: New York, NY, USA, 1986; Volumes 1 and 2. [Google Scholar]
- Techagumpuch, A.; Nalwa, H.S.; Miyata, S. Promising Applications of Conducting Polymers. In Electroresponsive Molecular and Polymeric Systems; Marcel Dekker: New York, NY, USA, 1988; Volume 2. [Google Scholar]
- Yu, L.; Chen, M.; Dalton, L.R. Ladder polymers: Recent developments in syntheses, characterization, and potential applications as electronic and optical materials. Chem. Mater. 1990, 2, 649. [Google Scholar] [CrossRef]
- Miller, J.S. Conducting polymers—Materials of commerce. Adv. Mater. 1993, 5, 671. [Google Scholar] [CrossRef]
- Osaheni, J.A.; Jenekhe, S.A. Synthesis and processing of heterocyclic polymers as electronic, optoelectronic, and nonlinear optical materials. 1. New conjugated rigid-rod benzobisthiazole polymers. Chem. Mater. 1992, 4, 1282. [Google Scholar] [CrossRef]
- Roberts, M.F.; Jenekhe, S.A. Preparation and processing of molecular composites of rigid-rod and flexible-chain polymers from soluble complexes. Chem. Mater. 1994, 6, 135. [Google Scholar] [CrossRef]
- Arnold, F.E., Jr.; Arnold, F.E. Rigid-rod polymers and molecular composites. Adv. Polym. Sci. 1994, 117, 257. [Google Scholar]
- Frommer, J.E.; Chance, R.R. Encyclopedia of Polymer Science and Engineering; Wiley: New York, NY, USA, 1986; Volume 5. [Google Scholar]
- Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S.R. A polymer/semiconductor write-once read-many-times memory. Nature 2003, 426, 166. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.Y.; Chu, C.W.; Szmanda, C.R.; Ma, L.P.; Yang, Y. Programmable polymer thin film and non-volatile memory device. Nat. Mater. 2004, 3, 918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-L.; Wang, K.-L.; Huang, G.-S.; Zhu, C.-X.; Tok, E.-S.; Neoh, K.-G.; Kang, E.-T. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties. Chem. Mater. 2009, 21, 3391. [Google Scholar] [CrossRef]
- Ling, Q.-D.; Song, Y.; Lim, S.-L.; Teo, E.Y.-H.; Tan, Y.-P.; Zhu, C.; Chan, D.S.H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angew. Chem. Int. Ed. 2006, 45, 2947. [Google Scholar] [CrossRef] [PubMed]
- Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D.S.-H.; Kang, E.-T.; Neoh, K.-G. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 2008, 33, 917. [Google Scholar] [CrossRef]
- Ajayaghosh, A. Donor-acceptor type low band gap polymers: Polysquaraines and related systems. Chem. Soc. Rev. 2003, 32, 181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, C.; Liu, G.; Wang, J.; Chen, Y.; Li, R.-W. Structural effect on the resistive switching behavior of triphenylamine-based poly(azomethine)s. Chem. Commun. 2014, 50, 11496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, C.; Liu, G.; Zhu, X.; Chen, X.; Pan, L.; Tan, H.; Xue, W.; Ji, Z.; Wang, J.; et al. Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chem. Commun. 2014, 50, 11856. [Google Scholar] [CrossRef] [PubMed]
- Murari, N.M.; Hwang, Y.-J.; Kim, F.S.; Jenekhe, S.A. Organic nonvolatile memory devices utilizing intrinsic charge-trapping phenomena in an n-type polymer semiconductor. Org. Electron. 2016, 31, 104. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Z.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 2615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, S.-T.; Yan, Y.; Zhou, L.; Huang, L.-B.; Zhuang, J.; Sonar, P.; Roy, V.A.L. Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. Sci. Rep. 2015, 5, 10683. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.J.; Liou, G.S. Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. NPG Polym. J. 2016, 48, 117–138. [Google Scholar] [CrossRef]
- Verbakel, F.; Meskers, S.C.J.; Janssen, R.A.J. Electronic memory effects in a sexithiophene−poly(ethylene oxide) block copolymer doped with NaCl. combined diode and resistive switching behavior. Chem. Mater. 2006, 18, 2707–2712. [Google Scholar] [CrossRef]
- Lin, H.-T.; Pei, Z.; Chen, J.-R.; Hwang, G.-W.; Fan, J.-F.; Chan, Y.-J. A new nonvolatile bistable polymer-nanoparticle memory device. IEEE Electron Device Lett. 2007, 28, 951–953. [Google Scholar]
- Attianese, D.; Petrosino, M.; Vacca, P.; Concilio, S.; Iannelli, P.; Rubino, A.; Bellone, S. Switching device based on a thin film of an azo-containing polymer for application in memory cells. IEEE Electron Device Lett. 2008, 29, 44–46. [Google Scholar] [CrossRef]
- Cho, B.; Kim, T.-W.; Choe, M.; Wang, G.; Song, S.; Lee, T. Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles. Org. Electron. 2009, 10, 473–477. [Google Scholar] [CrossRef]
- Zhuang, X.-D.; Zhuang, X.-D.; Chen, Y.; Liu, G.; Zhang, B.; Neoh, K.-G.; Kang, E.-T.; Zhu, C.-X.; Li, Y.-X.; Niu, L.-J. Preparation and memory performance of a nanoaggregated dispersed red 1-functionalized poly (n-vinylcarbazole) film via solution-phase self-assembly. Adv. Funct. Mater. 2010, 20, 2916–2922. [Google Scholar] [CrossRef]
- Chu, C.W.; Ouyang, J.; Tseng, H.H.; Yang, Y. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv. Mater. 2005, 17, 1440–1443. [Google Scholar] [CrossRef]
- Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D.S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random access memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732–8733. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Ohshimizu, K.; Lee, W.-Y.; Hsu, J.-C.; Higashihara, T.; Ueda, M.; Chen, W.-C. Electrically bistable memory devices based on all-conjugated block copolythiophenes and their PCBM composite films. J. Mater. Chem. 2011, 21, 14502. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Fang, R.-C.; Zheng, A.-M.; Chu, Y.-Y.; Tao, X.; Xu, H.-H.; Ding, S.-J.; Shen, Y.-Z. Nonvolatile memory devices based on polyimides bearing noncoplanar twisted biphenyl units containing carbazole and triphenylamine side-chain groups. J. Mater. Chem. 2011, 21, 15643–15654. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.; Liu, Y.-L.; Chen, Y.; Neoh, K.-G.; Li, Y.-X.; Zhu, C.-X.; Tok, E.-S.; Kang, E.-T. Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units. Chemistry 2011, 17, 10304–10311. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-J.; Lin, Z.-H.; Zhao, Q.; Ma, Y.; Shi, H.-F.; Yi, M.-D.; Ling, Q.-D.; Fan, Q.-L.; Zhu, C.-X.; Kang, E.-T.; et al. Flash-memory effect for polyfluorenes with on-chain Iridium(III) complexes. Adv. Funct. Mater. 2011, 21, 979–985. [Google Scholar] [CrossRef]
- Chen, C.-J.; Yen, H.-J.; Chen, W.-C.; Liou, G.-S. Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties. J. Mater. Chem. 2012, 22, 14085–14093. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, G.; Chen, Y.; Wang, C.; Neoh, K.-G.; Bai, T.; Kang, E.-T. Electrical bistability and worm memory effects in donor-acceptor polymers based on poly(N-vinylcarbazole). Chempluschem 2012, 77, 74–81. [Google Scholar] [CrossRef]
- Liu, C.-L.; Chen, W.-C. Donor-acceptor polymers for advanced memory device applications. Polym. Chem. 2011, 2, 2169–2174. [Google Scholar] [CrossRef]
- Carchano, H.; Lacoste, R.; Segui, Y. Bistable Electrical Switching in Polymer Thin Films. Appl. Phys. Lett. 1971, 19, 414. [Google Scholar] [CrossRef]
- Pender, L.F.; Fleming, R.J. Memory switching in glow discharge polymerized thin films. J. Appl. Phys. 1975, 46, 3426–3431. [Google Scholar] [CrossRef]
- Segui, Y.; Ai, B.; Carchano, H. Switching in polystyrene films: Transition from on to off state. J. Appl. Phys. 1976, 47, 140–143. [Google Scholar] [CrossRef]
- Hwang, W.; Kao, K.C. On the theory of filamentary double injection and electroluminescence in molecular crystals. J. Chem. Phys. 1974, 60, 3845–3855. [Google Scholar] [CrossRef]
- Wierschem, A.; Niedernostheide, F.J.; Gorbatyuk, A.; Purwins, H.G. Observation of current-density filamentation in multilayer structures by EBIC measurements. Scanning 1995, 17, 106–116. [Google Scholar] [CrossRef]
- Joo, W.-J.; Choi, T.-L.; Lee, J.; Lee, S.K.; Jung, M.-S.; Kim, N.; Kim, J.M. Metal filament growth in electrically conductive polymers for nonvolatile memory application. J. Phys. Chem. B 2006, 110, 23812–23816. [Google Scholar] [CrossRef] [PubMed]
- Jana, D.; Roy, S.; Panja, R.; Dutta, M.; Rahaman, S.Z.; Mahapatra, R.; Maikap, S. Conductive-bridging random access memory: Challenges and opportunity for 3D architecture. Nanoscale Res. Lett. 2015, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Liu, C.-L.; Chen, W.-C. Donor-acceptor conjugated polymers of arylene vinylene with pendent phenanthro[9,10-d]imidazole for high-performance flexible resistor-type memory applications. Polym. Chem. 2013, 4, 5261. [Google Scholar] [CrossRef]
- Hahm, S.G.; Lee, T.J.; Kim, D.M.; Kwon, W.; Ko, Y.-G.; Michinobu, T.; Ree, M. Electrical memory characteristics of nitrogen-linked poly(2,7-carbazole)s. J. Phys. Chem. C 2011, 115, 21954. [Google Scholar] [CrossRef]
- Yu, A.-D.; Kurosawa, T.; Lai, Y.-C.; Higashihara, T.; Ueda, M.; Liu, C.-L.; Chen, W.-C. Flexible polymer memory devices derived from triphenylamine–pyrene containing donor-acceptor polyimides. J. Mater. Chem. 2012, 22, 20754–20763. [Google Scholar] [CrossRef]
- Chen, C.-J.; Yen, H.-J.; Hu, Y.-C.; Liou, G.-S. Novel programmable functional polyimides: Preparation, mechanism of CT induced memory, and ambipolar electrochromic behavior. J. Mater. Chem. C 2013, 1, 7623–7634. [Google Scholar] [CrossRef]
- Liu, G.; Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Liaw, D.-J.; Chang, F.-C.; Zhu, C.-X.; Chan, D.S.-H. Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. J. Appl. Phys. 2007, 102, 024502. [Google Scholar] [CrossRef]
- Ling, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Chen, Y.; Zhuang, X.-D.; Zhu, C.; Chan, D.S.H. Thermally stable polymer memory devices based on a π-conjugated triad. Appl. Phys. Lett. 2008, 92, 143302. [Google Scholar] [CrossRef]
- Liu, G.; Liaw, D.-J.; Lee, W.-Y.; Ling, Q.-D.; Zhu, C.-X.; Chan, D.S.-H.; Kang, E.-T.; Neoh, K.-G. Tristable electrical conductivity switching in a polyfluorene–diphenylpyridine copolymer with pendant carbazole groups. Philos. Trans. R. Soc. A 2009, 367, 4203. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y. Polyfluorene-Based Push−Pull Type Functional Materials for Write-Once-Read-Many-Times Memory Devices. Chem. Mater. 2010, 22, 4455. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.; Liu, B.; Zou, Y. Organic semiconductor memory devices based on a low-band gap polyfluorene derivative with isoindigo as electron-trapping moieties. Appl. Phys. Lett. 2011, 98, 063303. [Google Scholar] [CrossRef]
- Wu, H.-C.; Yu, A.-D.; Lee, W.-Y.; Liu, C.-L.; Chen, W.-C. A poly(fluorene-thiophene) donor with a tethered phenanthro[9,10-d]imidazole acceptor for flexible nonvolatile flash resistive memory devices. Chem. Commun. 2012, 48, 9135. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, G.; Chen, Y.; Liu, S.; Chen, Q.; Li, R.; Zhang, B. Dithienopyrrole-/Benzodithiophene-Based Donor-Acceptor Polymers for Memristor. ChemPlusChem 2014, 79, 1263. [Google Scholar] [CrossRef]
- Lei, B.; Kwan, W.L.; Shao, Y.; Yang, Y. Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices. Org. Electron. 2009, 10, 1048. [Google Scholar] [CrossRef]
- Kwan, W.L.; Lei, B.; Shao, Y.; Yang, Y. Understanding the switching mechanism of polymer memory. Curr. Appl. Phys. 2010, 10, E50. [Google Scholar] [CrossRef]
- Joo, C.W.; Jeon, S.O.; Yook, K.S.; Lee, J.Y. Origin of bistability in polyfluorene-based organic bistable devices. Synth. Met. 2009, 159, 1809. [Google Scholar] [CrossRef]
- Gomes, H.L.; Benvenho, A.R.V.; de Leeuw, D.M.; Colle, M.; Stallinga, P.; Verbakel, F.; Taylor, D.M. Switching in polymeric resistance random-access memories (RRAMS). Org. Electron. 2008, 9, 119. [Google Scholar] [CrossRef]
- Rocha, P.R.F.; Kiazadeh, A.; De Leeuw, D.M.; Meskers, S.C.J.; Verbakel, F.; Taylor, D.M.; Gomes, H.L. The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memories. J. Appl. Phys. 2013, 113, 134504. [Google Scholar] [CrossRef]
- Fang, Y.-K.; Liu, C.-L.; Li, C.; Lin, C.-J.; Mezzenga, R.; Chen, W.-C. Synthesis, morphology, and properties of poly(3-hexylthiophene)-block-poly(vinylphenyl oxadiazole) donor-acceptor rod-coil block copolymers and their memory device applications. Adv. Funct. Mater. 2010, 20, 3012. [Google Scholar] [CrossRef]
- Park, S.; Lee, T.J.; Kim, D.M.; Kim, J.C.; Kim, K.; Kwon, W.; Ko, Y.-G.; Choi, H.; Chang, T.; Ree, M. Electrical memory characteristics of a nondoped π-conjugated polymer bearing carbazole moieties. J. Phys. Chem. B 2010, 114, 10294. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.J.; Park, S.; Hahm, S.G.; Kim, D.M.; Kim, K.; Kim, J.; Kwon, W.; Kim, Y.; Chang, T.; Ree, M. Programmable digital memory characteristics of nanoscale thin films of a fully conjugated polymer. J. Phys. Chem. C 2009, 113, 3855. [Google Scholar] [CrossRef]
- Pan, L.; Hu, B.; Zhu, X.; Chen, X.; Shang, J.; Tan, H.; Xue, W.; Zhu, Y.; Liu, G.; Li, R.-W. Role of oxadiazole moiety in different D-A polyazothines and related resistive switching properties. J. Mater. Chem. C 2013, 1, 4556. [Google Scholar] [CrossRef]
- Ko, Y.-G.; Kim, D.M.; Kim, K.; Jung, S.; Wi, D.; Michinobu, T.; Ree, M. Digital memory versatility of fully π-conjugated donor-acceptor hybrid polymers. ACS Appl. Mater. Interfaces 2014, 6, 8415. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-J.; Lin, W.-P.; Yi, M.-D.; Xu, W.-J.; Tang, C.; Zhao, Q.; Ye, S.-H.; Liu, X.-M.; Huang, W. Conjugated polymers with cationic iridium(III) complexes in the side-chain for flash memory devices utilizing switchable through-space charge transfer. J. Mater. Chem. 2012, 22, 22964. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.-J.; Lin, Z.-H.; Dong, X.-C.; Zhao, Q.; Lin, W.-P.; Yi, M.-D.; Ye, S.-H.; Zhu, C.-X.; Huang, W. Design and synthesis of conjugated polymers containing Pt(II) complexes in the side-chain and their application in polymer memory devices. J. Mater. Chem. 2012, 22, 9576. [Google Scholar] [CrossRef]
- Lin, W.; Sun, H.; Liu, S.; Yang, H.; Ye, S.; Xu, W.; Zhao, Q.; Liu, X.; Huang, W. Conjugated polymer with on-chain Pt(II) complex for resistive random-access memory device. Macromol. Chem. Phys. 2012, 213, 2472. [Google Scholar] [CrossRef]
- Han, S.T.; Zhou, Y.; Roy, V.A.L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.J.; Tsai, H.; Kuo, C.Y.; Nie, W.; Mohite, A.D.; Gupta, G.; Wang, J.; Wu, J.H.; Liou, G.S.; Wang, H.L. Flexible memory devices with tunable electrical bistability via controlled energetics in donor-donor and donor-acceptor conjugated polymers. J. Mater. Chem. C 2014, 2, 4374–4378. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, H.-J.; Shan, C.; Wang, L.; Xu, P.; Zhou, M.; Wang, H.-L. Development of Conjugated Polymers for Memory Device Applications. Polymers 2017, 9, 25. https://doi.org/10.3390/polym9010025
Yen H-J, Shan C, Wang L, Xu P, Zhou M, Wang H-L. Development of Conjugated Polymers for Memory Device Applications. Polymers. 2017; 9(1):25. https://doi.org/10.3390/polym9010025
Chicago/Turabian StyleYen, Hung-Ju, Changsheng Shan, Leeyih Wang, Ping Xu, Ming Zhou, and Hsing-Lin Wang. 2017. "Development of Conjugated Polymers for Memory Device Applications" Polymers 9, no. 1: 25. https://doi.org/10.3390/polym9010025
APA StyleYen, H. -J., Shan, C., Wang, L., Xu, P., Zhou, M., & Wang, H. -L. (2017). Development of Conjugated Polymers for Memory Device Applications. Polymers, 9(1), 25. https://doi.org/10.3390/polym9010025