Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of PANI Nanotubes
2.3. Characterization Methods
2.4. Sensors Fabrication and the Gas Sensing Measurements
3. Results and Discussion
3.1. Structure Characterization of PANI Nanotubes
3.2. Morphology and the Growth Mechanism
3.3. Gas Sensing Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jia, L.; Cai, W.P. Micro/Nanostructured Ordered Porous Films and Their Structurally Induced Control of the Gas Sensing Performances. Adv. Funct. Mater. 2010, 20, 3765–3773. [Google Scholar] [CrossRef]
- Sira, S.; Tapan, S.; Raul, H.; Ashok, M. Potassium Iodide-Functionalized Polyaniline Nanothin Film Chemiresistor for Ultrasensitive Ozone Gas Sensing. Polymers 2017, 9, 80. [Google Scholar]
- Su, X.S.; Gao, L.; Zhou, F.; Duan, G.T. A substrate-independent fabrication of hollow sphere arrays via template-assisted hydrothermal approach and their application in gas sensing. Sens. Actuators B Chem. 2017, 251, 74–85. [Google Scholar] [CrossRef]
- Su, X.S.; Gao, L.; Zhou, F.; Cai, W.P.; Duan, G.T. “Close network” effect of a ZnO micro/nanoporous array allows high UV-irradiated NO2 sensing performance. RSC Adv. 2017, 7, 21054–21060. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Wang, Y.Y.; Duan, G.T.; Cai, W.P. In situ growth of porous ZnO nanosheet-built network film as high-performance gas sensor. Sens. Actuators B Chem. 2015, 221, 350–356. [Google Scholar] [CrossRef]
- Dai, Z.F.; Xu, L.; Duan, G.T.; Li, T.; Zhang, H.W.; Li, Y.; Wang, Y.; Wang, Y.L.; Cai, W.P. Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip. Sci. Rep. 2013, 3, 1669. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.F.; Duan, G.T.; Cheng, Z.X.; Xu, L.; Li, T.; Liu, G.Q.; Zhang, H.W.; Li, Y.; Cai, W.P. Janus gas: Reversible redox transition of Sarin enables its selective detection by an ethanol modified nanoporous SnO2 chemiresistor. Chem. Commun. 2015, 51, 8193–8196. [Google Scholar] [CrossRef] [PubMed]
- Byshkin, M.; Buonocore, F.; Matteo, A.D.; Milano, G. A unified bottom up multiscale strategy to model gas sensors based on conductive polymers. Sens. Actuators B Chem. 2015, 211, 42–51. [Google Scholar] [CrossRef]
- Seon, J.P.; Chul, S.P.; Hyeonseok, Y. Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids. Polymers 2017, 9, 155. [Google Scholar]
- Nicolas, D.D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15. [Google Scholar] [CrossRef]
- Cho, S.; Kwon, O.S.; You, S.A.; Jang, J. Shape-controlled polyaniline chemiresistors for high-performance DMMP sensors: Effect of morphologies and charge-transport properties. J. Mater. Chem. A 2013, 1, 5679. [Google Scholar] [CrossRef]
- Virji, S.; Huang, J.X.; Kaner, R.B.; Weille, B.H. Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett. 2004, 4, 491–496. [Google Scholar] [CrossRef]
- Huang, J.X.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.X.; Kaner, R.B.; Weille, B.H. Polyaniline nanofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Thanh, H.L.; Yukyung, K.; Hyeonseok, Y. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar]
- Paik, P.; Manda, R.; Amgoth, C.; Kumar, K.S. Polyaniline nanotubes with rectangular-hollow-core and its self-assembled surface decoration: High conductivity and dielectric properties. RSC Adv. 2014, 4, 12342–12352. [Google Scholar] [CrossRef]
- Li, Z.F.; Zhang, H.Y.; Liu, Q.; Liu, Y.D.; Stanciu, L.; Xie, J. Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 2014, 71, 257–267. [Google Scholar] [CrossRef]
- Poldsalu, I.; Harjo, M.; Tamm, T.; Uibu, M.; Peikolainen, A.L.; Kiefer, R. Inkjet-printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sens. Actuators B Chem. 2017, 250, 44–51. [Google Scholar] [CrossRef]
- Zhang, H.D.; Tang, C.C.; Long, Y.Z.; Zhang, J.C.; Huang, R.; Li, J.J.; Gu, C.Z. High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens. Actuators A Phys. 2014, 219, 123–127. [Google Scholar] [CrossRef]
- Park, H.W.; Kim, T.Y.; Huh, J.; Kang, M.; Lee, J.E.; Yoon, H. Anisotropic Growth Control of Polyaniline Nanostructures and Their Morphology-Dependent Electrochemical Characteristics. ACS Nano 2012, 6, 7624–7633. [Google Scholar] [CrossRef] [PubMed]
- Wan, M. Some Issues Related to Polyaniline Micro-/Nanostructures. Macrom. Rap. Commun. 2009, 30, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Z.J.; Tana, M.H.; He, C.B. Uniform Polyaniline Nanotubes Formation via Frozen Polymerization and Application for Oxygen Reduction Reactions. Macrom. Chem. Phys. 2015, 216, 977–984. [Google Scholar] [CrossRef]
- Rana, U.; Chakrabarti, K.; Malik, S. Benzene tetracarboxylic acid doped polyaniline nanostructures: Morphological, spectroscopic and electrical characterization. J. Mater. Chem. 2012, 22, 15665–15671. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Rana, U.; Malik, S. Relaxation Dynamics and Morphology-Dependent Charge Transport in Benzene-Tetracarboxylic-Acid-Doped Polyaniline Nanostructures. J. Phys. Chem. C 2013, 117, 22029–22040. [Google Scholar] [CrossRef]
- Tavandashti, N.P.; Ghorbani, M.; Shojaei, A. Controlled growth of hollow polyaniline structures: From nanotubes to microspheres. Polymer 2013, 54, 5586–5594. [Google Scholar] [CrossRef]
- Wu, W.L.; Pan, D.; Li, Y.F.; Zhao, G.H.; Jing, L.Y.; Chen, S.L. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: A mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim. Acta 2015, 152, 126–134. [Google Scholar] [CrossRef]
- Zhang, L.J.; Long, Y.Z.; Chen, Z.J.; Wan, M.X. The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv. Funct. Mater. 2004, 14, 693–698. [Google Scholar] [CrossRef]
- Yin, C.Q.; Duan, G.T.; Cai, W.P. Polyaniline nanofibers and their self-assembly into a film to be used as ammonia sensor. RSC Adv. 2016, 6, 103185–103191. [Google Scholar] [CrossRef]
- Mu, J.J.; Ma, G.F.; Peng, H.; Li, J.J.; Sun, K.J.; Lei, Z.Q. Facile fabrication of self-assembled polyaniline nanotubes doped with d-tartaric acid for high-performance supercapacitors. J. Power Sources 2013, 242, 797–802. [Google Scholar] [CrossRef]
- Xu, G.H.; Xu, D.D.; Zhang, J.N.; Wang, K.X.; Chen, Z.M.; Chen, J.F.; Xu, Q. Controlled fabrication of PANI/CNF hybrid films: Molecular interaction induced various micromorphologies and electrochemical properties. J. Colloid Interface Sci. 2013, 411, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, H.; Jiang, F. Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes. Colloid Surf. A Phys. Eng. Asp. 2015, 479, 60–67. [Google Scholar] [CrossRef]
- Zhang, L.J.; Wan, M.X. Self-assembly of polyaniline—From nanotubes to hollow microspheres. Adv. Funct. Mater. 2003, 13, 815–820. [Google Scholar] [CrossRef]
- Rana, U.; Mondal, S.; Sannigrahi, J.; Sukul, P.K.; Asif, A.M.; Majumdar, S.; Malik, S. Aromatic bi-, tri- and tetracarboxylic acid doped polyaniline nanotubes: Effect on morphologies and electrical transport. J. Mater. Chem. C 2014, 2, 3382–3389. [Google Scholar] [CrossRef]
- Chiou, N.R.; Lee, L.J.; Epstein, A.J. Self-assembled polyaniline nanofibers/nanotubes. Chem. Mater. 2007, 19, 3589–3591. [Google Scholar] [CrossRef]
- Sim, B.; Choi, H.J. Facile synthesis of polyaniline nanotubes and their enhanced stimuli-response under electric fields. RSC Adv. 2015, 5, 11905–11912. [Google Scholar] [CrossRef]
- Ding, H.J.; Shen, J.Y.; Wan, M.X.; Chen, Z.J. Formation Mechanism of Polyaniline Nanotubes by a Simplified Template-Free Method. Macrom. Chem. Phys. 2008, 209, 864–871. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.J.; Long, Y.Z.; Yuan, J.H.; Han, D.X.; Wang, Z.J.; Niu, L.; Chen, Z.J. Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes. Chem. A Eur. J. 2006, 12, 5314–5319. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.Z.; Long, Y.Z.; Zhang, L.J.; Ma, Y.J.; Chen, Z.J.; Wang, N.L.; Zhang, Z.; Wan, M.X. Electrical conductivity of an individual polyaniline nanotube synthesized by a self-assembly method. Macromol. Rapid Commun. 2003, 24, 938–942. [Google Scholar] [CrossRef]
- Kosonen, H.; Ruokolainen, J.; Knaapila, M.; Torkkeli, M.; Jokela, K.; Serimaa, R.; Brinke, G.T.; Bras, W.; Monkman, A.P.; Ikkala, O. Nanoscale conducting cylinders based on self-organization of hydrogen-bonded polyaniline supramolecules. Macromolecules 2000, 33, 8671–8675. [Google Scholar] [CrossRef]
- Qiu, H.J.; Wan, M.X.; Matthews, B.R.; Dai, L.M. Conducting polyaniline nanotubes by template-free polymerization. Macromolecules 2001, 34, 675–677. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Trchova, M.; Konyushenko, E.N. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 2008, 41, 3530–3536. [Google Scholar] [CrossRef]
- Zujovic, Z.D.; Laslau, C.; Bowmaker, G.A.; Kilmartin, P.A.; Webber, A.L.; Brown, S.P.; Travassejdic, J. Role of Aniline Oligomeric Nanosheets in the Formation of Polyaniline Nanotubes. Macromolecules 2010, 43, 662–670. [Google Scholar] [CrossRef]
- Ran, F.; Tan, Y.T.; Liu, J.; Zhao, L.; Kong, L.B.; Luo, Y.C.; Kang, L. Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polym. Adv. Technol. 2012, 23, 1297–1301. [Google Scholar] [CrossRef]
- Tavandashti, N.P.; Ghorbani, M.; Shojaei, A. Morphology transition control of polyaniline from nanotubes to nanospheres in a soft template method. Polym. Int. 2015, 64, 88–95. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Xu, L. Enhanced conductivity of polyaniline by conjugated crosslinking. Macromol. Rapid Commun. 2011, 32, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Collie Duguid, E.S.; Sweeney, K.; Stewart, K.N.; Miller, I.D.; Smyth, E.; Heys, S.D. SerpinB3, a new prognostic tool in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2012, 132, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Chen, Z.J.; Wang, N.L.; Ma, Y.J.; Zhang, Z.; Zhang, L.J.; Wan, M.X. Electrical conductivity of a single conducting polyaniline nanotube. Appl. Phys. Lett. 2003, 83, 1863–1865. [Google Scholar] [CrossRef]
- Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S.Z.; Xu, N.S.; Ding, Y.; Wang, Z.L. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 88, 203101–203104. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
CA/Ani Value | Morphology | Size |
---|---|---|
0.01 | Nanoflowers (nanosheets) | 150 nm |
0.05 | Nanosheets and nanotubes | 194 nm |
0.5 | Nanotubes | 210 nm |
2 | Nanoparticles | 297 nm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Gao, L.; Zhou, F.; Duan, G. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing. Polymers 2017, 9, 544. https://doi.org/10.3390/polym9100544
Yin C, Gao L, Zhou F, Duan G. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing. Polymers. 2017; 9(10):544. https://doi.org/10.3390/polym9100544
Chicago/Turabian StyleYin, Changqing, Lei Gao, Fei Zhou, and Guotao Duan. 2017. "Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing" Polymers 9, no. 10: 544. https://doi.org/10.3390/polym9100544
APA StyleYin, C., Gao, L., Zhou, F., & Duan, G. (2017). Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing. Polymers, 9(10), 544. https://doi.org/10.3390/polym9100544