A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Instrumentation
2.2. Preparation of Fe3O4 Magnetic Nanospheres (MNSs)
2.3. Preparation of Hypericin-Imprinted Nanospheres (Fe3O4@PDA/Hyp) and Non-Imprinted Nanospheres (Fe3O4@PDA)
2.4. Determination of Static Adsorption Capacity of Fe3O4@PDA/Hyp for Hypericin (Q)
2.5. Dynamic Adsorption Test
2.6. Selectivity of Fe3O4@PDA/Hyp and Fe3O4@PDA for Hypericin
2.7. Adsorption–Extraction Cycles
2.8. Preparation of the Herb Extract Solution
2.9. HPLC Analysis
3. Results and Discussion
3.1. Synthesis of Fe3O4@PDA/Hyp
3.2. Characterization of Fe3O4@PDA/Hyp
3.2.1. FTIR Analysis
3.2.2. TEM and DLS Analysis
3.2.3. BET Analysis
3.3. Optimization of Preparation Conditions for Specific Adsorption Capacity of Fe3O4@PDA/Hyp NSs
3.3.1. Effect of Monomer Concentration on Specific Adsorption Capacity
3.3.2. Effect of the Ratio of Hypericin to Dopamine on Specific Adsorption Capacity
3.3.3. Effect of the Amount of Acetone on Specific Adsorption Capacity
3.3.4. Effect of Other Parameters on Specific Adsorption Capacity
3.4. Dynamic Adsorption Study
3.5. Maximum of Specific Adsorption Capacity
3.6. Binding Selectivity
3.7. Reproducibility and Reusability Evaluation
3.8. Adsorption of Fe3O4@PDA/Hyp NSs from the Herb Extract
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saw, C.L.; Olivo, M.; Soo, K.C.; Heng, P.W. Delivery of hypericin for photodynamic applications. Cancer Lett. 2006, 241, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Falk, H. From the photosensitizer hypericin to the photoreceptor stentorian—The chemistry of phenanthroperylene quinones. Angew. Chem. Int. Ed. 1999, 38, 3116–3136. [Google Scholar] [CrossRef]
- Roby, C.A.; Anderson, G.D.; Kantor, E.; Dryer, D.A.; Burstein, A.H. St John’s wort: Effect on CYP3A4 activity. Clin. Pharmacol. Ther. 2000, 67, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.B.; Sander, L.C.; Wise, S.A.; Girard, J. Development and evaluation of methods for determination of naphthodianthrones and flavonoids in St. John’s wort. J. Chromatogr. A 2006, 1115, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Razali, M.; Kim, J.F.; Attfield, M.; Budd, P.M.; Drioli, E.; Lee, Y.M.; Szekely, G. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. 2015, 17, 5196–5205. [Google Scholar] [CrossRef]
- Niu, Q.; Gao, K.; Lin, Z.; Wu, W. Surface molecular-imprinting engineering of novel cellulose nanofibril/conjugated polymer film sensors towards highly selective recognition and responsiveness of nitroaromatic vapors. Chem. Commun. 2013, 49, 9137–9139. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Chen, C.; Xie, J.; Cai, C.; Chen, X. Selective adsorption of elastase by surface molecular imprinting materials prepared with novel monomer. RSC Adv. 2016, 6, 43223–43227. [Google Scholar] [CrossRef]
- Ding, X.; Heiden, P.A. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques. Macromol. Mater. Eng. 2014, 299, 268–282. [Google Scholar] [CrossRef]
- Liu, D.; Song, N.; Feng, W.; Jia, Q. Synthesis of graphene oxide functionalized surface-imprinted polymer for the preconcentration of tetracycline antibiotics. RSC Adv. 2016, 6, 11742–11748. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Li, J.; Chen, X.; Zhang, M.; Luo, L.; Yao, S. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root. Food Chem. 2014, 145, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Abbate, V.; Bassindale, A.R.; Brandstadt, K.F.; Taylor, P.G. Biomimetic catalysis at silicon centre using molecularly imprinted polymers. J. Catal. 2011, 284, 68–76. [Google Scholar] [CrossRef]
- Xia, Z.; Lin, Z.; Xiao, Y.; Wang, L.; Zheng, J.; Yang, H.; Chen, G. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation. Biosens. Bioelectron. 2013, 47, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-H.; Lu, C.-H.; Guo, X.-C.; Chen, F.-R.; Yang, H.-H.; Wang, X.-R. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem. 2010, 20, 880–883. [Google Scholar] [CrossRef]
- Wang, X.-N.; Liang, R.-P.; Meng, X.-Y.; Qiu, J.-D. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J. Chromatogr. A. 2014, 1362, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-H.; Tang, S.-F.; Yao, Q.-H.; Chen, F.-R.; Yang, H.-H.; Wang, X.-R. A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens. Bioelectron. 2010, 26, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar] [CrossRef]
- Mrowczynski, R.; Jurga-Stopa, J.; Markiewicz, R.; Coy, E.L.; Jurga, S.; Wozniak, A. Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Adv. 2016, 6, 5936–5943. [Google Scholar] [CrossRef]
- Yusof, N.A.; Rahman, S.K.A.; Hussein, M.Z.; Ibrahim, N.A. Preparation and characterization of molecularly imprinted polymer as SPE sorbent for melamine isolation. Polymers 2013, 5, 1215–1228. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, X.; He, X.; Chen, L.; Zhang, Y. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 2012, 4, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.-X.; Li, Z.-B.; Pei, Z.-C.; Hou, Y. An efficient method for the synthesis of hypericin by monochromatic light. CN 103274920 A, 17 December 2014. [Google Scholar]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. 2005, 117, 2842–2845. [Google Scholar] [CrossRef]
- Kupai, J.; Rojik, E.; Huszthy, P.; Szekely, G. Role of chirality and macroring in imprinted polymers with enantiodiscriminative power. Appl. Mater. Interfaces 2015, 7, 9516–9525. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-W.; Yang, M.-C. Enhancement of the imprinting effect in cholesterol-imprinted microporous silica. J. Non-Cryst. Solids 2008, 354, 4037–4042. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Umpleby Ii, R.J.; Baxter, S.C.; Bode, M.; Berch, J.K., Jr.; Shah, R.N.; Shimizu, K.D. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal. Chim. Acta 2001, 435, 35–42. [Google Scholar] [CrossRef]
- Lynge, M.E.; van der Westen, R.; Postma, A.; Stadler, B. Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 2011, 3, 4916–4928. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qin, C.; Li, D.; Hou, Y.; Li, S.; Sun, J. Molecularly imprinted polymer for specific extraction of hypericin from hypericum perforatum l. Herbal extract. J. Pharm. Biomed. 2014, 98, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Florea, A.-M.; Iordache, T.-V.; Branger, C.; Ghiurea, M.; Avramescu, S.; Hubca, G.; Sârbu, A. An innovative approach to prepare hypericin molecularly imprinted pearls using a “phyto-template”. Talanta 2016, 148, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef]
NSs | Paticle size (nm) | Polydispersity index | ζ Potential (mV) |
---|---|---|---|
MNSs | 513 ± 98 | 0.444 | 1.35 ± 0.98 |
Fe3O4@PDA | 572 ± 85 | 0.761 | −3.96 ± 0.87 |
Fe3O4@PDA/Hyp | 559 ± 40 | 0.385 | −0.86 ± 0.08 |
Fe3O4@PDA after extracting process | 574 ± 40 | 0.374 | −1.38 ± 0.42 |
Fe3O4@PDA/Hyp after extracting process | 561 ± 98 | 0.338 | −9.96 ± 0.66 |
NSs | Average pore diameter (nm) | Surface area (m2/g) | Pore volume (cm3/g) |
---|---|---|---|
Fe3O4@PDA/Hyp | 8.095 ± 0.409 | 54.764 ± 4.189 | 0.111 ± 0.003 |
Fe3O4@PDA | 9.185 ± 1.086 | 12.176 ± 2.166 | 0.028 ± 0.001 |
Entry | pH | Temperature (°C) | Qs (mg/g) | RSD |
---|---|---|---|---|
1 | 7.5 | 25 | 15.23 ± 0.08 | 0.005 |
2 | 8.0 | 25 | 16.40 ± 0.23 | 0.014 |
3 | 8.5 | 25 | 15.41 ± 0.52 | 0.034 |
4 | 8.0 | 0 | 10.12 ± 0.89 | 0.088 |
5 b | 8.0 | 25 | 6.44 ± 0.19 | 0.029 |
6 c | 8.0 | 25 | 8.02 ± 0.51 | 0.005 |
Concentration of hypericin (μM) | Q1 (mg/g) | RSD | Qs (mg/g) | RSD |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
10 | 2.62 ± 0.03 | 0.006 | 0.92 ± 0.80 | 0.814 |
25 | 7.21 ± 0.71 | 0.110 | 3.72 ± 0.68 | 0.067 |
40 | 10.89 ± 0.71 | 0.095 | 8.10 ± 0.27 | 0.031 |
59.4 | 18.28 ± 0.73 | 0.047 | 16.30 ± 0.12 | 0.007 |
75 | 19.06 ± 0.02 | 0.015 | 10.58 ± 1.11 | 0.105 |
100 | 19.00 ± 0.04 | 0.096 | 14.96 ± 1.32 | 0.077 |
Factor | Hypericin | Protohypericin | Emodin |
---|---|---|---|
SF | / | 1.92 | 3.55 |
IF | 8.01 (3.56 a, 4.5 b) | 3.07 | 1.36 |
Sample | Peak area (Hyp) | Peak area (Protohyp) | Adsorption of Hyp (%) | Adsorption of Protohyp (%) |
---|---|---|---|---|
Initial | 676,506.3 | 364,871.0 | / | / |
Fe3O4@PDA | 620,591.5 | 322,926.9 | 8.3 | 11.5 |
Fe3O4@PDA/Hyp | 353,391.0 | 246,750.0 | 47.8 | 32.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Fan, F.; Zhang, Y.; Pei, Z.; Wang, W.; Pei, Y. A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin. Polymers 2017, 9, 135. https://doi.org/10.3390/polym9040135
Cheng W, Fan F, Zhang Y, Pei Z, Wang W, Pei Y. A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin. Polymers. 2017; 9(4):135. https://doi.org/10.3390/polym9040135
Chicago/Turabian StyleCheng, Wenxia, Fengfeng Fan, Ying Zhang, Zhichao Pei, Wenji Wang, and Yuxin Pei. 2017. "A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin" Polymers 9, no. 4: 135. https://doi.org/10.3390/polym9040135
APA StyleCheng, W., Fan, F., Zhang, Y., Pei, Z., Wang, W., & Pei, Y. (2017). A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin. Polymers, 9(4), 135. https://doi.org/10.3390/polym9040135