Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone
Abstract
:1. Introduction
2. Materials
3. Methodology
3.1. Ternary Phase Diagram Construction
3.2. Polarized Light Microscopy (PLM)
3.3. Stability Tests
3.4. Rheological Analysis
3.5. Small-Angle X-ray Scattering (SAXS)
3.6. Texture Profile Analysis (TPA)
3.7. Bioadhesion Studies
3.8. In Vitro Non-Rate Limiting Drug Release
3.9. Mechanism and Mathematical Modelling of Drug Release
3.10. Analytical Method
4. Results
4.1. Phase Behavior and Physicochemical Characterisation
4.2. Textural Analysis and Skin Bioadhesion Strength
4.3. Drug Release Assay and Mathematical Modelling
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CETETH-20 | polyoxyethylene (20) cetyl alcohol |
OA1 and OA2 | samples containing CETETH-20/oleic acid/water at 40:10:50 and 40:20:40 |
OAP1 and OAP2 | samples containing CETETH-20/oleic acid/N-methylpyrrolidone/water at 40:9:1:50 and 40:19:1:40 |
IM1 and IM2 | samples containing CETETH-20/isopropyl myristate/water at 40:10:50 and 40:20:40 |
P1 and P2 | samples containing CETETH-20/N-methylpyrrolidone/water at 40:10:50 and 40:20:40 |
References
- Villanueva, J.R.; Villanueva, L.R.; Navarro, M.G. Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends. Int. J. Pharm. 2017, 516, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Sahle, F.F.; Gerecke, C.; Kleuser, B.; Bodmeier, R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm. 2017, 516, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Khalmuratova, R.; Kim, D.W.; Jeon, S.Y. Effect of dexamethasone on wound healing of the septal mucosa in the rat. Am. J. Rhinol. Allergy 2011, 25, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Kannan, R.; John, R.R.; Nantha Kumar, C. A single pre operative dose of sub mucosal dexamethasone is effective in improving post operative quality of life in the surgical management of impacted third molars: A comparative randomised prospective study. J. Maxillofac. Oral Surg. 2016, 15, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Beule, A.G.; Scharf, C.; Biebler, K.E.; Göpferich, A.; Steinmeier, E.; Wolf, E.; Hosemann, W.; Kafta, H. Effects of topically applied dexamethasone on mucosal wound healing using a drug-releasing stent. Laryngoscope 2008, 118, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Nanda, H.S.; Tomoko, N.; Shangwu, C.; Rong, C.; Naoki, K.; Guoping, C. Collagen microgel-assisted dexamethasone release from PLLA-collagen hybrid scaffolds of controlled pore structure for osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. 2014, 25, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Salmazi, R.; Calixto, G.M.F.; Bernegossi, J.; Ramos, M.A.S.; Bauab, T.M.; Chorilli, M. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int. J. Nanomed. 2015, 10, 4815–4824. [Google Scholar]
- Souza, A.L.R.; Kiill, C.P.; Santos, F.K.; Luz, G.M.; Chorilli, M.; Gremião, M.P.D. Nanotechnology-based drug delivery systems for dermatomycosis treatment. Curr. Nanosci. 2012, 8, 512–519. [Google Scholar] [CrossRef]
- Oyafuso, M.H.; Carvalho, F.C.; Chiavacci, L.A.; Gremião, M.P.; Chorilli, M. Design and characterization of silicone and surfactant based systems for topical drug delivery. J. Nanosci. Nanotechnol. 2015, 15, 1–10. [Google Scholar] [CrossRef]
- Milak, S.; Zimmer, A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int. J. Pharm. 2015, 478, 569–587. [Google Scholar] [CrossRef] [PubMed]
- Du, L.R.; Lu, X.J.; Guan, H.T.; Yang, Y.J.; Gu, M.J.; Zheng, Z.Z.; Lv, T.S.; Yan, Z.G.; Song, L.; Zou, Y.H.; et al. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate. Int. J. Pharm. 2014, 471, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Campos, M.L.; Peccinini, R.G.; Gremião, M.P. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur. J. Pharm. Biopharm. 2013, 84, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Silva, H.R.; Luz, G.M.; Barbi, M.S.; Landgraf, D.S.; Chiavacci, L.A.; Sarmento, V.H.V.; Gremião, M.P.D. Rheological, mechanical and adhesive properties of surfactant-containing systems designed as a potential platform for topical drug delivery. J. Biomed. Nanotechnol. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Silva, H.R.; Luz, G.M.; Satake, C.Y.; Correa, B.C.; Sarmento, V.H.V.; Oliveira, G.H.; Carvalho, F.C.; Chorilli, M.; Gremião, M.P.D. Surfactant-based Transdermal System for Fluconazole Skin Delivery. J. Nanomed. Nanotechnol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Sulek, M.W.; Bak, A. Antiseizure properties of aqueous solutions of ethoxylated alcohols. Int. J. Mol. Sci. 2010, 11, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Djekic, L.; Primorac, M. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int. J. Pharm. 2008, 352, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, P.; Alexandridis, P.; Lindman, B. Modification of the microstructure in poloxamer block copolymer-water-“Oil” systems by varying the “Oil” type. Macromolecules 1997, 30, 6788–6797. [Google Scholar] [CrossRef]
- Callens, C.; Ceulemans, J.; Ludwig, A.; Foreman, P.; Remon, J.P. Rheological study on mucoadhesivity of some nasal powder formulations. Eur. J. Pharm. Biopharm. 2003, 55, 323–328. [Google Scholar]
- Baruah, A.; Pathak, A.K.; Ojha, K. Phase behavior and thermodynamic properties of lamellar liquid crystal developed for viscoelastic surfactant based fracturing fluid. Chem. Eng. Sci. 2015, 131, 146–154. [Google Scholar] [CrossRef]
- Martins, M.R.F.M.; Veiga, F. Permeation enhancers in transdermal drug delivery systems: A new application of cyclodextrins. Bras. J. Pharm. Sci. 2002, 38, 33–54. [Google Scholar]
- Mahato, R.I.; Narang, A.S. Pharmaceutical Dosage Forms and Drug Delivery, 2nd ed.; CRC Press: Boca Raton, FL, USA; London, UK, 2012. [Google Scholar]
- Flynn, G.L.; Stewart, B.S. Percutaneous drug penetration: Choosing candidates for transdermal development. Drug Dev. Res. 1988, 13, 169–185. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 3, 123–133. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2016, 309, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.C.; Sarmento, V.H.V.; Chiavacci, L.A.; Barbi, M.S.; Gremiao, M.P.D. Development and in vitro evaluation of surfactant systems for controlled release of zidovudine. J. Pharm. Sci. 2010, 99, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
OA1 | OA2 | OAP1 | OAP2 | IM1 | IM2 | P1 | P2 | |
---|---|---|---|---|---|---|---|---|
CETETH-20 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
Oleic acid | 10 | 20 | 9 | 19 | - | - | - | - |
N-methylpyrrolidone | - | - | 1 | 1 | - | - | 10 | 20 |
Isopropyl myristate | - | - | - | - | 10 | 20 | - | - |
Water | 50 | 40 | 50 | 40 | 50 | 40 | 50 | 40 |
Samples | q1 (Å−1) | q2 (Å−1) | q3 (Å−1) | d (Å) | d1/d2 | d1/d3 | Classification |
---|---|---|---|---|---|---|---|
OA1 | 0.80 | 1.38 | 1.43 | 7.85 | 1.73 | 1.79 | * |
DXM-OA1 | 0.80 | 1.38 | 1.43 | 7.85 | 1.73 | 1.79 | * |
OA2 | 0.84 | 1.65 | 2.47 | 7.48 | 1.96 | 2.94 | Lamellar |
DXM-OA2 | 0.83 | 1.66 | 2.48 | 7.57 | 2.00 | 3.00 | Lamellar |
OAP1 | 0.76 | 1.52 | 2.29 | 8.26 | 2.00 | 3.00 | Lamellar |
DXM-OAP1 | 0.77 | 1.53 | 2.29 | 8.15 | 2.00 | 2.97 | Lamellar |
OAP2 | 0.80 | 1.65 | 2.49 | 7.85 | 2.00 | 3.10 | Lamellar |
DXM-OAP2 | 0.78 | 1.63 | 2.41 | 8.00 | 2.00 | 3.00 | Lamellar |
P1 | 0.90 | 0.99 | 1.55 | 6.98 | 1.10 | 1.72 | Hexagonal |
DXM-P1 | 0.89 | 0.99 | 1.54 | 7.05 | 1.10 | 1.73 | Hexagonal |
P2 | 0.99 | 1.04 | 1.72 | 6.34 | 1.00 | 1.73 | Hexagonal |
DXM-P2 | 0.99 | 1.04 | 1.72 | 6.34 | 1.00 | 1.73 | Hexagonal |
IM1 | 0.72 | 1.25 | 1.90 | 8.72 | 1.73 | 2.63 | Hexagonal |
DXM-IM1 | 0.72 | 1.25 | 1.90 | 8.72 | 1.73 | 2.63 | Hexagonal |
IM2 | 0.72 | 1.28 | 1.75 | 8.72 | 1.78 | 2.43 | Hexagonal |
DXM-IM2 | 0.66 | 1.28 | 1.87 | 9.52 | 1.94 | 2.83 | ** |
Kinetic Model | Parameters | OA1 | OA2 | OAP1 | OAP2 | P1 | P2 | IM1 | IM2 |
---|---|---|---|---|---|---|---|---|---|
Lag time (h) | 2.56 | 3.21 | 3.33 | 3.10 | 3.24 | 3.37 | 3.68 | 3.66 | |
Baker-Lonsdale | R2 | 0.77 | 0.00 | 0.77 | 0.78 | 0.77 | 0.77 | 0.76 | 0.75 |
First order | R2 | 0.96 | 0.97 | 0.96 | 0.91 | 0.96 | 0.96 | 0.96 | 0.95 |
Higuchi | R2 | 0.77 | 0.78 | 0.78 | 0.79 | 0.77 | 0.77 | 0.76 | 0.75 |
Hixson-Crowell | R2 | 0.96 | 0.97 | 0.97 | 0.90 | 0.96 | 0.96 | 0.96 | 0.96 |
Korsmeyer-Peppas | R2 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 |
n | 1.67 | 1.34 | 1.36 | 1.74 | 1.82 | 1.74 | 1.81 | 1.58 | |
Weibull | R2 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 |
b | 1.37 | 1.20 | 1.17 | 5.6 | 1.50 | 1.17 | 2.22 | 1.73 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyafuso, M.H.; Carvalho, F.C.; Takeshita, T.M.; De Souza, A.L.R.; Araújo, D.R.; Merino, V.; Gremião, M.P.D.; Chorilli, M. Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone. Polymers 2017, 9, 330. https://doi.org/10.3390/polym9080330
Oyafuso MH, Carvalho FC, Takeshita TM, De Souza ALR, Araújo DR, Merino V, Gremião MPD, Chorilli M. Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone. Polymers. 2017; 9(8):330. https://doi.org/10.3390/polym9080330
Chicago/Turabian StyleOyafuso, Márcia H., Flávia C. Carvalho, Tatiane M. Takeshita, Ana L. Ribeiro De Souza, Daniele R. Araújo, Virginia Merino, Maria Palmira D. Gremião, and Marlus Chorilli. 2017. "Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone" Polymers 9, no. 8: 330. https://doi.org/10.3390/polym9080330
APA StyleOyafuso, M. H., Carvalho, F. C., Takeshita, T. M., De Souza, A. L. R., Araújo, D. R., Merino, V., Gremião, M. P. D., & Chorilli, M. (2017). Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone. Polymers, 9(8), 330. https://doi.org/10.3390/polym9080330