Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Pot Experiment
2.3. Water Use
2.4. Tagging Flowers and Pods
2.5. Grain Yield, Yield Components and Root Distribution with Soil Depth at Maturity
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions for Field Experiments in 2011 and 2012
3.2. The Effect of Water Supply during Flowering on Grain Yield and Yield Components in the Field Experiment
3.3. The Effect of Water Supply at Flowering on Water Use and the Water Uptake at Different Soil Depths in the Field
3.4. Grain Yield, Yield Components, Cumulative Biomass and Water Use, Flower and Tagged-Pod Number under WW and WS in the Pot Experiment
3.5. Root Dry Weight at Maturity under WW and WS in the Pot Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manavalan, L.P.; Guttikonda, S.K.; Tran, L.S.P.; Nguyen, H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009, 50, 1260–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederick, J.R.; Camp, C.R.; Bauer, P.J. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 2001, 41, 759–763. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Abbasi, S. Soybean response to drought and seed inoculation. World Appl. Sci. J. 2012, 17, 55–60. [Google Scholar]
- Koester, R.P.; Skoneczka, J.A.; Cary, T.R.; Diers, B.W.; Ainsworth, E.A. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 2014, 65, 3311–3321. [Google Scholar] [CrossRef] [PubMed]
- Leport, L.; Turner, N.C.; Davies, S.L.; Siddique, K.H.M. Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur. J. Agron. 2006, 24, 236–246. [Google Scholar] [CrossRef]
- Fang, X.; Turner, N.C.; Yan, G.J.; Li, F.M.; Siddique, K.H.M. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 2010, 61, 335–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Jin, Y.; Xi, Y.; Zhang, C.; Cui, T.; Fang, X.W.; et al. Conserved water use improves the yield performance of soybean [Glycine max (L. Merr.)] under drought. Agric. Water Manag. 2017, 179, 236–245. [Google Scholar] [CrossRef]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in north China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Man, J.; Shi, Y.; Yu, Z.; Zhang, Y. Root growth, soil water variation and grain yield response of winter wheat to supplemental irrigation. Plant Prod. Sci. 2016, 19, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Qin, W.L.; Chen, S.Y.; Shao, L.W.; Sun, H.Y. Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Xu, X.X.; Zhang, M.; Li, J.P.; Liu, Z.Q.; Zhao, Z.G.; Zhang, Y.H.; Zhou, S.L.; Wang, Z.M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.; Liang, Y.; Hu, X.; Cai, H.; Gu, B. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Pei, D.; Chen, S.Y. Root growth and soilwater utilization of winter wheat in the North China Plain. Hydrol. Process. 2004, 18, 2275–2287. [Google Scholar] [CrossRef]
- Chen, Y.L.; Palta, J.; Clements, J.; Buirchell, B.; Siddique, K.H.M.; Rengel, Z. Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Res. 2014, 165, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Liu, W.X.; Li, Q.X.; Ma, D.Y.; Lu, H.F.; Feng, W.; Xie, Y.X.; Zhu, Y.J.; Guo, T.C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Xue, L.H.; Duan, J.J.; Wang, Z.M.; Guo, Z.W.; Lu, L.Q. Effects of different irrigation regimes on spatial-temporal distribution of roots, soil water use and yield in winter wheat. Acta Ecol. Sin. 2010, 30, 5296–5305. (In Chinese) [Google Scholar]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in northwest India. Agric. Water Manag. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Messina, C.D.; Beatty, A.; Samples, M. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 2010, 102, 475–482. [Google Scholar] [CrossRef]
- Ludlow, M.M.; Muchow, R.C. A critical-evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 1990, 43, 107–153. [Google Scholar]
- Subbarao, G.V.; Johansen, C.; Slinkard, A.E.; Rao, R.C.N.; Saxena, N.P.; Chauhan, Y.S. Strategies for improving drought resistance in grain legumes. Crit. Rev. Plant Sci. 1995, 14, 469–523. [Google Scholar] [CrossRef]
- Turner, N.C.; Wright, G.C.; Siddique, K.H.M. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001, 71, 193–231. [Google Scholar]
- Kashiwagi, J.; Krishnamurthy, L.; Upadhyaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 2005, 146, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Palta, J.A.; Turner, N.C. Crop root system traits cannot be seen as a silver bullet delivering drought resistance. Plant Soil 2019, 439, 31–43. [Google Scholar] [CrossRef]
- Vadez, V.; Rao, S.; Kholova, J.; Krishnamurthy, L.; Kashiwagi, J.; Ratnakumar, P.; Sharma, K.; Bhatnagar-Mathur, P.; Basu, P. Root research for drought tolerance in legumes: Quo vadis. J. Food Legum. 2008, 21, 77–85. [Google Scholar]
- Ratnakumar, P.; Vadez, V.; Nigam, S.; Krishnamurthy, L. Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system. Plant Biol. 2009, 11, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; He, J.; Turner, N.C.; Du, Y.L.; Li, F.M. Water-conserving and biomass-allocation traits are associated with higher yields in modern cultivars compared to landraces of soybean [Glycine max (L.) Merr.] in rainfed water-limited environments. Environ. Exp. Bot. 2019, 168, 103883. [Google Scholar] [CrossRef]
- Wang, T.; Du, Y.L.; He, J.; Turner, N.C.; Wang, B.R.; Zhang, C.; Cui, T.; Li, F.M. Recently-released genotypes of naked oat (Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance. Field Crops Res. 2017, 204, 169–179. [Google Scholar] [CrossRef]
- Turner, N.C. Imposing and maintaining soil water deficits in drought studies in pots. Plant Soil 2019, 439, 45–55. [Google Scholar] [CrossRef]
- Fehr, W.; Caviness, C.; Burmood, D.; Pennington, J. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.; White, P.J. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Res. 2013, 151, 35–44. [Google Scholar] [CrossRef]
- Feng, S.; Gu, S.; Zhang, H.; Wang, D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res. 2017, 214, 131–141. [Google Scholar] [CrossRef]
- Liu, W.X.; Ma, G.; Wang, C.Y.; Wang, J.R.; Lu, H.F.; Li, S.S.; Feng, W.; Xie, Y.X.; Ma, D.Y.; Kang, G.Z. Irrigation and nitrogen regimes promote the use of soil water and nitrate nitrogen from deep soil layers by regulating root growth in wheat. Front. Plant Sci. 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Leport, L.; Turner, N.C.; French, R.J.; Tennant, D.; Thomson, B.D.; Siddique, K.H.M. Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. Eur. J. Agron. 1998, 9, 295–303. [Google Scholar] [CrossRef]
- Blessing, C.H.; Mariette, A.; Kaloki, P.; Bramley, H. Profligate and conservative: Water use strategies in grain legumes. J. Exp. Bot. 2018, 69, 349–369. [Google Scholar] [CrossRef]
- He, J.; Du, Y.L.; Wang, T.; Turner, N.C.; Xi, Y.; Li, F.M. Old and new cultivars of soya bean (Glycine max L.) subjected to soil drying differ in abscisic acid accumulation, water relations characteristics and yield. J. Agron. Crop Sci. 2016, 202, 372–383. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Ketring, D.L.; Reid, J.L. Growth of peanut roots under field conditions. Agron. J. 1993, 85, 80–85. [Google Scholar] [CrossRef]
- Christopher, J.T.; Manschadi, A.M.; Hammer, G.L.; Borrell, A.K. Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust. J. Agric. Res. 2008, 59, 354–364. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Siddique, K.H.M.; Li, F.M. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
Genotypes | Location | Year of Release | Still Grown by Farmers? |
---|---|---|---|
Yuanhuangdou (YHD) | Gansu | Landrace | No |
Huangsedadou (HD) | Gansu | Landrace | No |
Longxixiaohuangpi (LX) | Gansu | Landrace | No |
Yiwofeng (YWF) | Gansu | Landrace | No |
Jindou 19 (J19) | Shanxi | 2003 | Yes |
Zhonghuang 30 (ZH) | Beijing | 2006 | Yes |
Year (Y) | Water Treatment (W) | Genotype (G) | Filled-Pod Number | Grain Number | HGWx | Grain Yield | ET | WUEG |
---|---|---|---|---|---|---|---|---|
2011 | Irrigated | YHD | 1111 | 1830 | 11.3 | 207 | 358 | 0.58 |
HD | 1299 | 2418 | 8.4 | 204 | 336 | 0.61 | ||
LX | 1331 | 2557 | 7.2 | 182 | 326 | 0.56 | ||
YWF | 754 | 1484 | 12.1 | 180 | 317 | 0.57 | ||
ZH | 806 | 1708 | 17.3 | 296 | 322 | 0.92 | ||
JD | 795 | 1623 | 18.4 | 298 | 324 | 0.92 | ||
Rainfed | YHD | 1075 | 1841 | 9.9 | 181 | 312 | 0.58 | |
HD | 1150 | 2302 | 7.4 | 171 | 291 | 0.59 | ||
LX | 1095 | 2051 | 6.6 | 135 | 280 | 0.48 | ||
YWF | 740. | 1545 | 10.2 | 158 | 273 | 0.46 | ||
ZH | 610 | 1301 | 16.2 | 210 | 271 | 0.77 | ||
JD | 648 | 1369 | 16.7 | 228 | 268 | 0.85 | ||
2012 | Irrigated | YHD | 1612 | 2157 | 10.4 | 225 | 458 | 0.49 |
HD | 1514 | 2556 | 8.9 | 228 | 449 | 0.51 | ||
LX | 1484 | 2975 | 6.9 | 206 | 447 | 0.46 | ||
YWF | 1070 | 1917 | 12.1 | 232 | 436 | 0.53 | ||
ZH | 861 | 1861 | 17.0 | 307 | 429 | 0.74 | ||
JD | 839 | 1783 | 17.2 | 316 | 425 | 0.72 | ||
Rainfed | YHD | 1467 | 1818 | 10.2 | 185 | 403 | 0.46 | |
HD | 887 | 2152 | 9.1 | 196 | 402 | 0.49 | ||
LX | 983 | 1833 | 8.8 | 162 | 396 | 0.41 | ||
YWF | 872 | 1629 | 12.8 | 208 | 381 | 0.54 | ||
ZH | 681 | 1465 | 16.2 | 237 | 363 | 0.65 | ||
JD | 636 | 1504 | 17.0 | 255 | 370 | 0.68 | ||
LSD | W | *** (50) | *** (82) | ** (0.4) | *** (13) | *** (2.3) | *** (0.0)2) | |
Y | *** (50) | *** (82) | * (0.4) | *** (13) | *** (2.3) | *** (0.0)2) | ||
G | *** (86) | *** (143) | *** (0.7) | *** (23) | *** (4.1) | *** (0.0)3) | ||
Y × W | * (70) | ** (117) | *** (0.5) | n.s | *** (3.3) | n.s | ||
Y × G | *** (121) | * (202) | ** (0.9) | *** (31) | *** (5.8) | *** (0.0)5) | ||
W × G | *** (121) | *** (202) | n.s | *** (31) | *** (5.8) | * (0.05) | ||
Y × G × W | ** (172) | n.s | n.s | n.s | n.s | n.s |
Water Treatment (W) | Genotype (G) | Root Biomass | Aboveground Biomass | Filled-Pod Number | Grain Number | HGW | Grain Yield | WUEG |
---|---|---|---|---|---|---|---|---|
WW | HD | 20.6 | 83.7 | 128 | 186 | 8.2 | 15.2 | 0.31 |
LX | 16.6 | 80.1 | 147 | 217 | 7.3 | 16.0 | 0.32 | |
ZH | 8.2 | 58.6 | 52 | 111 | 15.1 | 16.6 | 0.70 | |
JD | 11.1 | 60.5 | 50 | 112 | 17.6 | 19.6 | 0.63 | |
WS | HD | 10.7 | 42.2 | 78 | 103 | 7.0 | 7.2 | 0.36 |
LX | 9.8 | 42.2 | 56 | 56 | 5.9 | 3.3 | 0.15 | |
ZH | 6.2 | 40.5 | 48 | 99 | 13.8 | 13.5 | 0.82 | |
JD | 7.5 | 39.7 | 50 | 80 | 13.7 | 11.0 | 0.63 | |
LSD | W | *** (2.6) | *** (6.5) | *** (12) | *** (14) | *** (0.9) | *** (1.2) | n.s |
G | *** (3.7) | ** (9.2) | *** (17) | *** (20) | *** (1.3) | *** (1.7) | *** (0.09) | |
W × G | n.s | * (13.1) | *** (24) | *** (28) | n.s | ***(2.4) | * (0.13) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Jin, Y.; Turner, N.C.; Li, F.-M. Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean. Agronomy 2020, 10, 120. https://doi.org/10.3390/agronomy10010120
He J, Jin Y, Turner NC, Li F-M. Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean. Agronomy. 2020; 10(1):120. https://doi.org/10.3390/agronomy10010120
Chicago/Turabian StyleHe, Jin, Yi Jin, Neil C. Turner, and Feng-Min Li. 2020. "Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean" Agronomy 10, no. 1: 120. https://doi.org/10.3390/agronomy10010120
APA StyleHe, J., Jin, Y., Turner, N. C., & Li, F. -M. (2020). Irrigation during Flowering Improves Subsoil Water Uptake and Grain Yield in Rainfed Soybean. Agronomy, 10(1), 120. https://doi.org/10.3390/agronomy10010120