Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Baker’s Yeast Vinasse
2.2. Assays for Quantification of Baker’s Yeast Vinasse Composition
2.2.1. Mineral Nutrients Analysis
2.2.2. Glycine Betaine Assays
2.2.3. Protein Determination
2.2.4. Polyamine Assay
2.3. Preparation of Foliar Fertilizer with BYV and Se
2.4. Tests of Foliar Fertilizers with BYV and Se under Controlled Conditions
2.5. Test under Greenhouse Conditions
2.6. Determination of the Influence of the Foliar Fertilization on Bioactives Accumulation
2.7. Statistical Analysis
3. Results
3.1. Baker’s Yeast Vinasse Analysis and Preparation of the Foliar Fertilizer with BYV and Se
3.2. The Effects of Foliar Fertilizers with BYV and Se on Tomatoes Grown under Controlled Conditions
3.3. The Effects of Foliar Fertilizers with BYV and Se on Production of Tomatoes Grown under Greenhouse Conditions
3.4. The Effects of Foliar Fertilizers with BYV and Se on the Accumulation of Bioactive Compounds in Tomatoes Grown under Greenhouse Conditions
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef]
- Fernandes, J.; Hu, X.; Ryan Smith, M.; Go, Y.-M.; Jones, D.P. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic. Biol. Med. 2018, 127, 215–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Gladyshev, V.N. Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chem. Rev. 2009, 109, 4828–4861. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Abdalla, N.; Taha, H.S.; Alshaal, T.; El-Henawy, A.; Faizy, S.E.-D.A.; Shams, M.S.; Youssef, S.M.; Shalaby, T.; Bayoumi, Y.; et al. Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett. 2016, 14, 123–147. [Google Scholar] [CrossRef]
- Narváez-Ortiz, W.A.; Becvort-Azcurra, A.A.; Fuentes-Lara, L.O.; Benavides-Mendoza, A.; Valenzuela-García, J.R.; González-Fuentes, J.A. Mineral Composition and Antioxidant Status of Tomato with Application of Selenium. Agronomy 2018, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sharma, A.; Singh, D. Effect of sodium selenate on photosynthetic efficiency, antioxidative defence system and micronutrients in maize (Zea mays). Biologia 2018, 73, 137–144. [Google Scholar] [CrossRef]
- Hanson, B.; Garifullina, G.F.; Lindblom, S.D.; Wangeline, A.; Ackley, A.; Kramer, K.; Norton, A.P.; Lawrence, C.B.; Pilon-Smits, E.A.H. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 2003, 159, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.L.; Lindblom, S.D.; Quinn, C.F.; Fakra, S.; Marcus, M.A.; Pilon-Smits, E.A.H. Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytol. 2007, 175, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, M.; Pilon-Smits, E.A.H. The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol. 2017, 213, 1582–1596. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Ahmad, R.; Waraich, E.A.; Nawaz, F.; Ashraf, M.Y.; Khalid, M. Selenium (Se) improves drought tolerance in crop plants—A myth or fact? J. Sci. Food Agric. 2016, 96, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Mimmo, T.; Tiziani, R.; Valentinuzzi, F.; Lucini, L.; Nicoletto, C.; Sambo, P.; Scampicchio, M.; Pii, Y.; Cesco, S. Selenium Biofortification in Fragaria × ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Chomchan, R.; Puttarak, P.; Brantner, A.; Siripongvutikorn, S. Selenium-Rich Ricegrass Juice Improves Antioxidant Properties and Nitric Oxide Inhibition in Macrophage Cells. Antioxidants 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Chomchan, R.; Siripongvutikorn, S.; Puttarak, P. Selenium bio-fortification: An alternative to improve phytochemicals and bioactivities of plant foods. Funct. Foods Health Dis. 2017, 7, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Liu, J.; Chen, Y.; Zhang, X. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem. 2018, 252, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Islam, M.Z.; Mele, M.A.; Baek, J.P.; Kang, H.M. Iron, Iodine and Selenium Effects on Quality, Shelf Life and Microbial Activity of Cherry Tomatoes. Not. Bot. Horti Agrobot. Cluj Napoca 2018, 46, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Perea-Domínguez, X.P.; Hernández-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Michaličková, D.; Belović, M.; Ilić, N.; Kotur-Stevuljević, J.; Slanař, O.; Šobajić, S. Comparison of Polyphenol-Enriched Tomato Juice and Standard Tomato Juice for Cardiovascular Benefits in Subjects with Stage 1 Hypertension: A Randomized Controlled Study. Plant Foods Hum. Nutr. 2019, 74, 122–127. [Google Scholar] [CrossRef]
- Newman, R.; Waterland, N.; Moon, Y.; Tou, J.C. Selenium Biofortification of Agricultural Crops and Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease Prevention—A Review. Plant Foods Hum. Nutr. 2019, 74, 449–460. [Google Scholar] [CrossRef]
- Hoarau, J.; Caro, Y.; Grondin, I.; Petit, T. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. J. Water Process Eng. 2018, 24, 11–25. [Google Scholar] [CrossRef]
- Leme, R.M.; Seabra, J.E. Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry. Energy 2017, 119, 754–766. [Google Scholar] [CrossRef]
- Robles-Gonzalez, V.; Galindez-Mayer, J.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H.M. Treatment of mezcal vinasses: A review. J. Biotechnol. 2012, 157, 524–546. [Google Scholar] [CrossRef]
- Lisičar, J.; Scheper, T.; Barbe, S. Turning Industrial Baker’s Yeast Manufacture into a Powerful Zero Discharge Multipurpose Bioprocess. Ind. Biotechnol. 2017, 13, 184–191. [Google Scholar] [CrossRef]
- Bekatorou, A.; Psarianos, C.; Koutinas, A.A. Production of food grade yeasts. Food Technol. Biotechnol. 2006, 44, 407–415. [Google Scholar]
- Saari, P.; Paananen, H.; Hurme, M. Study on the retention of glycinebetaine on a weak acid cation exchange resin. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 622–633. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine: An effective protectant against abiotic stress in plants. Trends Plant Sci. 2008, 13, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, P.; Kontturi, M.; Pehu, E.; Somersalo, S. Photosynthetic response of drought-and salt-stressed tomato and turnip rape plants to foliar-applied glycinebetaine. Physiol. Plant. 1999, 105, 45–50. [Google Scholar] [CrossRef]
- Ragab, M.E.; Helal, N.A.S.; Sawan, O.M.; Fawzy, Z.F.; El Sawy, S.M. Foliar application of glycine betaine for alleviating water stress of tomato plants grown under sandy soil conditions. Int. J. ChemTech Res. 2015, 8, 52–67. [Google Scholar]
- Heuer, B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci. 2003, 165, 693–699. [Google Scholar] [CrossRef]
- Park, E.-J.; Jeknic, Z.; Chen, T.H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol. 2006, 47, 706–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, F.; Wang, J.; Zhang, W.; Meng, Q.; Chen, T.H.; Murata, N.; Yang, X. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ. 2011, 34, 1931–1943. [Google Scholar] [CrossRef]
- Rasheed, R.; Iqbal, M.; Ashraf, M.A.; Hussain, I.; Shafiq, F.; Yousaf, A.; Zaheer, A. Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. J. Hortic. Sci. Biotechnol. 2018, 93, 385–391. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Edelstein, M.; Berstein, D.; Shenker, M.; Azaizeh, H.; Ben-Hur, M. Effects of Selenium on Growth Parameters of Tomato and Basil under Fertigation Management. HortScience 2016, 51, 1050–1056. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.Y.; Xu, W.H.; Chai, Y.R.; Zhou, X.B.; Zhang, M.Z.; Xie, W.W. Differences in Selenium Uptake, Distribution and Expression of Selenium Metabolism Genes in Tomatoes. Int. J. Agric. Biol. 2017, 19, 528–534. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oancea, A.; Gaspar, A.; Seciu, A.-M.; Stefan, L.M.; Utoiu, E.; Moldovan, L.; Turcu, D.; Badiu, D.C.; Craciunescu, O. Enhancement of chemopreventive compounds content in cabbage by treatment with a selenium based plant biostimulant. J. Int. Sci. Publ. Agric. Food 2017, 5, 166–177. [Google Scholar]
- Seciu, A.-M.; Oancea, A.; Gaspar, A.; Moldovan, L.; Craciunescu, O.; Stefan, L.; Petrus, V.; Georgescu, F. Water use efficiency on cabbage and cauliflower treated with a new biostimulant composition. Agric. Agric. Sci. Procedia 2016, 10, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Utoiu, E.; Oancea, A.; Gaspar, A.; Seciu, A.-M.; Ștefan, L.M.; Coroiu, V.; Craciunescu, O.; Badiu, C.D.; Oancea, F. Selenium biofortification treatment of cauliflower enhances their content in chemopreventive compounds and in vitro antitumoral activity. Sci. Bull. Ser. F Biotechnol. 2017, 21, 33–40. [Google Scholar]
- Sava, D.; Ionel, A.; Samuil, C. The influence of Vinasa Rompak fertilization on the production of the temporary pasturelands cultivated in the central Moldavian Plateau. Lucrări Şt 2005, 48, 451–455. [Google Scholar]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Matusiewicz, H.; Slachcinski, M. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge. Spectrochim. Acta Part B At. Spectrosc. 2017, 133, 52–59. [Google Scholar] [CrossRef]
- Smela, D.; Komprda, T.; Klejdus, B.; Kuban, V. Liquid chromatographic determination of biogenic amines in a meat product during fermentation and long-term storage. Czech J. Food Sci. 2003, 21, 167–175. [Google Scholar] [CrossRef]
- Marcé, M.; Brown, D.S.; Capell, T.; Figueras, X.; Tiburcio, A.F. Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: Application to plant and animal tissues. J. Chromatogr. B Biomed. Sci. Appl. 1995, 666, 329–335. [Google Scholar] [CrossRef]
- Şesan, T.E.; Sarbu, A.; Smarandache, D.; Savin, S.; Toma, A.; Craciunescu, O.; Oancea, A.; Manoiu, S.; Negru, G. Phytochemical investigations, structural and ultrastructural aspects of the Passiflora caerulea L. plants cultivated in Romania. Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi. Sectiunea II A Biologie Vegetala 2016, 62, 138–139. [Google Scholar]
- Buttaro, D.; Santamaria, P.; Signore, A.; Cantore, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. Agric. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Giuntini, D.; Graziani, G.; Lercari, B.; Fogliano, V.; Soldatini, G.F.; Ranieri, A. Changes in Carotenoid and Ascorbic Acid Contents in Fruits of Different Tomato Genotypes Related to the Depletion of UV-B Radiation. J. Agric. Food Chem. 2005, 53, 3174–3181. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Pourmorad, F.; Hosseinimehr, S.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006, 5, 1142–1145. [Google Scholar]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic Content and Antioxidant and Antimutagenic Activities in Tomato Peel, Seeds, and Byproducts. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, E. Chapter 1—Introduction, Definition and Classification of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 3–5. [Google Scholar] [CrossRef]
- Lobanov, A.V.; Fomenko, D.E.; Zhang, Y.; Sengupta, A.; Hatfield, D.L.; Gladyshev, V.N. Evolutionary dynamics of eukaryotic selenoproteomes: Large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007, 8, R198. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Eukaryotic selenoproteins and selenoproteomes. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 1424–1428. [Google Scholar] [CrossRef] [Green Version]
- Bocchini, M.; D’Amato, R.; Ciancaleoni, S.; Fontanella, M.C.; Palmerini, C.A.; Beone, G.M.; Onofri, A.; Negri, V.; Marconi, G.; Albertini, E.; et al. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance. Front. Plant Sci. 2018, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.; Chen, S.W. Response of Nitrogen Metabolism in Pak-choi Plants Treated with Different Sodium Selenate (Na2SeO4) Concentrations. Hortic. J. 2018, 87, 349–355. [Google Scholar] [CrossRef]
- Jozwiak, W.; Politycka, B. Effect of Selenium on Alleviating Oxidative Stress Caused by a Water Deficit in Cucumber Roots. Plants 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.M.; Mahajan, R.; Bhat, J.A.; Nazir, M.; Deshmukh, R. Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 2019, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Ntatsi, G. Biostimulant activity of silicon in horticulture. Sci. Hortic. 2015, 196, 66–81. [Google Scholar] [CrossRef]
- Liu, B.L.; Soundararajan, P.; Manivannan, A. Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. Plants 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Impact of Silicon in Plant Biomass Production: Focus on Bast Fibres, Hypotheses, and Perspectives. Plants 2017, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhousari, F.; Greger, M. Silicon and Mechanisms of Plant Resistance to Insect Pests. Plants 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Richmond, K.E.; Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 2003, 6, 268–272. [Google Scholar] [CrossRef]
- Ríos, J.J.; Blasco, B.; Cervilla, L.M.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J.M. Nitrogen-Use Efficiency in Relation to Different Forms and Application Rates of Se in Lettuce Plants. J. Plant Growth Regul. 2010, 29, 164–170. [Google Scholar] [CrossRef]
- Ponton, D.E.; Hare, L. Relating selenium concentrations in a planktivore to selenium speciation in lakewater. Environ. Pollut. 2013, 176, 254–260. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, S.; Guo, J.; Rao, Z.; Liu, C.; Jia, Z.; Suo, D.; Wang, S.; Li, Y.; Fan, X. Application of enzymatic probe sonication for selenium speciation in animal feeds. J. Chromatogr. A 2017, 1530, 51–58. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef]
- Kolbert, Z.; Lehotai, N.; Molnar, A.; Feigl, G. “The roots” of selenium toxicity: A new concept. Plant Signal. Behav. 2016, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinescu-Aruxandei, D.; Frîncu, R.M.; Capră, L.; Oancea, F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018, 10, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela-Soto, E.M.; Figueroa-Soto, C.G. Biosynthesis and Degradation of Glycine Betaine and Its Potential to Control Plant Growth and Development. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2019; pp. 123–140. [Google Scholar]
- Wu, L.; Shang, Y.; Liu, T.; Chen, W.; Liu, B.; Zhang, L.; Liu, D.; Zhang, B.; Zhang, H. Characterization of a selenium-resistance-enhancing homocysteine S-methyltransferase from Aegilops tauschii. Cereal Res. Commun. 2018, 46, 263–274. [Google Scholar] [CrossRef]
- Chasteen, T.G.; Bentley, R. Biomethylation of Selenium and Tellurium: Microorganisms and Plants. Chem. Rev. 2003, 103, 1–26. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, L.; Luo, X.; Mehboob, M.Z.; Ao, T.; Lang, M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. J. Exp. Bot. 2019, 70, 6401–6416. [Google Scholar] [CrossRef] [PubMed]
- Leite, R.D.; Hernandez-Navarro, S.; do Nascimento, M.N.; Potosme, N.M.R.; Carrion-Prieto, P.; Souza, E.D. Nitrogen fertilization affects Fourier Transform Infrared spectra (FTIR) in Physalis L. species. Comput. Electron. Agric. 2018, 150, 411–417. [Google Scholar] [CrossRef]
- Mäkelä, P.; Munns, R.; Colmer, T.; Condon, A.; Peltonen-Sainio, P. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Funct. Plant Biol. 1998, 25, 655–663. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Benard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Genard, M. Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
- Dabuleanu, I.; Dumitru, M.G.; Pascu, L.F.; Reiss, A. Action of Humic Acids, Boron, Calcium, Zinc and Galactomannans Extracted from the Seeds of Gleditsia triacanthos on the Content of Quercetin-3-O-rutinoside from Lycopersicon esculentum. Rev. De Chim. 2015, 66, 251–254. [Google Scholar]
- Petric, T.; Kiferle, C.; Perata, P.; Gonzali, S. Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS ONE 2018, 13, e0205650. [Google Scholar] [CrossRef]
- Zhang, Y.; De Stefano, R.; Robine, M.; Butelli, E.; Bulling, K.; Hill, L.; Rejzek, M.; Martin, C.; Schoonbeek, H.-j. Different Reactive Oxygen Species Scavenging Properties of Flavonoids Determine Their Abilities to Extend the Shelf Life of Tomato. Plant Physiol. 2015, 169, 1568–1583. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Yin, X.; Bañuelos, G.S.; Lin, Z.-Q.; Zhu, Z.; Liu, Y.; Yuan, L.; Li, M. Effect of Selenium on Control of Postharvest Gray Mold of Tomato Fruit and the Possible Mechanisms Involved. Front. Microbiol. 2016, 6. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Zhang, X.; Li, M. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci. Hortic. 2016, 198, 304–310. [Google Scholar] [CrossRef]
- Borguini, R.G.; Ferraz Da Silva Torres, E.A. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Chen, S.-L.; Wang, C.-K. Contribution of Tomato Phenolics to Antioxidation and Down-regulation of Blood Lipids. J. Agric. Food Chem. 2007, 55, 6475–6481. [Google Scholar] [CrossRef]
- Gélinas, P. In search of perfect growth media for Baker’s yeast production: Mapping patents. Compr. Rev. Food Sci. Food Saf. 2012, 11, 13–33. [Google Scholar] [CrossRef]
The Main Physical, Chemical and Biological Properties of the Soil | Genetic Horizons/Depth (cm) | |||
---|---|---|---|---|
Amho (0–20 cm) | Amho (20–40 cm) | AB (40–60 cm) | Bv (60–100 cm) | |
Soil texture (% colloidal clay) | 36.0 | 38.1 | 40.3 | 44.8 |
Dry summer consistency of the soil | Moderate cohesive | Very hard | Very hard | Very hard |
Soil reaction (pH H2O) | 6.25 | 6.66 | 7.02 | 7.45 |
Humus content (%) | 3.01 | 2.22 | 1.08 | 0.61 |
Total nitrogen content (Nt %) | 0.20 | 0.18 | 0.11 | 0.06 |
Mobile phosphorus content (ppm) | 51 | 44 | 32 | 45 |
Mobile potassium content (ppm) | 225 | 201 | 147 | 153 |
The degree of saturation in bases (V %) | 88 | 89 | 91 | 93 |
Dehydrogenase (mg formazan) | 18.56 | 10.11 | 3.52 | 2.21 |
Analyte | Units | Values * | ||
---|---|---|---|---|
LF | LF1 | LF2 | ||
N (total) | g L−1 | 65.7 ± 7.83 | 65.4 ± 8.02 | 109 ± 12.3 |
P (total) | g L−1, as P2O5 | 62.3 ± 1.47 | 61.5 ± 1.69 | 36.0 ± 1.17 |
K soluble water | g L−1, as K2O | 59.3 ± 3.14 | 58.8 ± 2.86 | 37.5 ± 0.59 |
Glycine-betaine (from vinasse) | g L−1 | - | 1.05 | 1.60 |
Fe (λ = 238.204 nm) | g L−1 | 0.60 ± 0.07 | 0.62 ± 0.08 | 0.65 ± 0.05 |
Mn (λ = 257.610 nm) | g L−1 | 0.37 ± 0.03 | 0.38 ± 0.02 | 0.38 ± 0.02 |
Cu (λ = 327.393 nm) | g L−1 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.005 |
B (λ = 249.677 nm) | g L−1 | 0.11 ± 0.01 | 0.12 ± 0.001 | 0.11 ± 0.01 |
Mg (λ = 280.271 nm) | g L−1 | 0.24 ± 0.03 | 0.24 ± 0.04 | 0.25 ± 0.03 |
Zn (λ = 213.857 nm) | g L−1 | 0.062 ± 0.014 | 0.061 ± 0.017 | 0.063 ± 0.015 |
Mo (λ = 202.031 nm) | g L−1 | 0.028 ± 0.003 | 0.028 ± 0.004 | 0.028 ± 0.001 |
Se (λ = 196.026 nm) | g L−1 | - | 0.073 ± 0.001 | 0.034 ± 0.003 |
pH | unit pH | 6.55 | 6.58 | 6.73 |
Density | kg L−1 | 1.175 | 1.181 | 1.187 |
Treatment | Average Yield kg m−2 | Average Yield Difference kg m−2 |
---|---|---|
Control (sprayed with water) | 3.125 ± 0.212 b | - |
LF, 3 treatments | 4.164 ± 0.244 a | 1.039 a |
LF1, 3 treatments | 4.081 ± 0.306 a | 0.955 a |
LF2, 3 treatments | 4.139 ± 0.187 a | 1.013 a |
Treatment | Fruit Quality Class | ||
---|---|---|---|
Extra (%) | 1st Class Quality (%) | 2nd Class Quality (%) | |
Control (sprayed with water) | 10 ± 2 c | 28 ± 4 c | 62 ± 5 a |
LF, 3 treatment | 15 ± 2 b | 35 ± 3 b | 50 ± 5 b |
LF1, 3 treatment | 18 ± 3 ab | 40 ± 4 a | 42 ± 6 bc |
LF2, 3 treatment | 22 ± 3 a | 43 ± 4 a | 35 ± 3 c |
Bioactive Compounds | Control (Sprayed with Water) | LF, 3 Treatment | LF1, 3 Treatment | LF2, 3 Treatment × 3 |
---|---|---|---|---|
Lycopene (mg 100 g−1 FW) 1 | 9.06 ± 0.59 b | 11.93 ± 0.36 a | 9.74 ± 0.28 b | 12.24 ± 0.47 a |
β-carotene (mg 100 g−1 FW) 1 | 0.94 ± 0.18 b | 0.89 ± 0.12 b | 1.33 ± 0.09 a | 1.23 ± 0.12 a |
Phytoene (mg 100 g−1 FW) 1 | 0.72 ± 0.09 b | 1.08 ± 0.08 a | 0.84 ± 0.16 b | 1.12 ± 0.14 a |
Phytofluene (mg 100 g−1 FW) 1 | 0.41 ± 0.03 b | 0.37 ± 0.06 b | 0.64 ± 0.07 b | 0.75 ± 0.08 a |
Total carotenoids (mg 100 g−1 FW) 1 | 11.09 ± 0.89 b | 14.27 ± 0.62 a | 12.55 ± 0.60 b | 15.32 ± 0.81 a |
Ascorbic acid (mg 100 g−1 FW) 1 | 117.8 ± 8.74 b | 112 ± 12.68 b | 134.5 ± 11.21 a | 147.2 ± 9.73 a |
Total polyphenols (mg gallic acid eq. 100 g−1 DW) 2 | 12.62 ± 1.04 b | 12.84 ± 0.69 b | 15.35 ± 0.87 a | 14.72 ± 0.79 a |
Rutin (mg. 100 g−1 DW) 2 | 4.46 ± 0.22 c | 4.29 ± 0.17 c | 7.19 ± 0.52 a | 5.94 ± 0.37 b |
Quercitin (mg 100 g−1 DW) 2 | 1.17 ± 0.08 b | 1.24 ± 0.11 b | 1.34 ± 0.14 b | 1.70 ± 0.16 a |
Naringenin (mg 100 g−1 DW) 2 | 0.38 ± 0.03 b | 0.43 ± 0.04 b | 0.65 ± 0.07 a | 0.45 ± 0.05 b |
Total flavonoids 3 (mg quercetin eq. 100 g−1 DW) | 9.48 ± 0.87 b | 10.62 ± 0.72 b | 12.47 ± 0.35 a | 12.12 ± 0.42 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, S.-O.; Neamțu, C.; Desliu-Avram, M.; Ghiurea, M.; Capra, L.; Radu, E.; Stoica, R.; Faraon, V.-A.; Zamfiropol-Cristea, V.; Constantinescu-Aruxandei, D.; et al. Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization. Agronomy 2020, 10, 133. https://doi.org/10.3390/agronomy10010133
Dima S-O, Neamțu C, Desliu-Avram M, Ghiurea M, Capra L, Radu E, Stoica R, Faraon V-A, Zamfiropol-Cristea V, Constantinescu-Aruxandei D, et al. Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization. Agronomy. 2020; 10(1):133. https://doi.org/10.3390/agronomy10010133
Chicago/Turabian StyleDima, Stefan-Ovidiu, Constantin Neamțu, Malina Desliu-Avram, Marius Ghiurea, Luiza Capra, Elena Radu, Rusăndica Stoica, Victor-Alexandru Faraon, Valentin Zamfiropol-Cristea, Diana Constantinescu-Aruxandei, and et al. 2020. "Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization" Agronomy 10, no. 1: 133. https://doi.org/10.3390/agronomy10010133
APA StyleDima, S. -O., Neamțu, C., Desliu-Avram, M., Ghiurea, M., Capra, L., Radu, E., Stoica, R., Faraon, V. -A., Zamfiropol-Cristea, V., Constantinescu-Aruxandei, D., & Oancea, F. (2020). Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Tomatoes through Foliar Fertilization. Agronomy, 10(1), 133. https://doi.org/10.3390/agronomy10010133