Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Growth Conditions
2.2. Sampling and Measurements
2.2.1. Gas-Exchange Rate Measurements
2.2.2. Plant Harvest and Biomass Determination
2.2.3. Mineral Element Concentration Determination
2.3. Statistical Analysis
3. Results
3.1. Dry Weight and Root to Shoot Ratio
3.2. Gas Exchange
3.3. Mineral Nutrient Concentration
3.4. Correlations between [CO2], N Supply, Transpiration Rate, and Mineral Nutrient Concentration
4. Discussion
4.1. Impacts of [CO2] and N Supply on the Growth of Cucumbers
4.2. Key Factors Affecting the Mineral Nutrient Concentrations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kläring, H.P.; Hauschild, C.; Heißner, A.; Bar-Yosef, B. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric. For. Meteorol. 2007, 143, 208–216. [Google Scholar] [CrossRef]
- Mortensen, L.M. Review: CO2 enrichment in greenhouses crop responses. Sci. Hortic. 1987, 33, 1–25. [Google Scholar] [CrossRef]
- Gruda, N. Impact of Environmental Variables on Product Quality of Greenhouse Vegetables for Fresh Consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Gruda, N.; Tanny, J. Protected crops. In Horticulture: Plants for People and Places; Dixon, G.R., Aldous, D.E., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 1, pp. 327–405. [Google Scholar]
- Kimball, B.A. Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations. Agron. J. 1983, 75, 779–788. [Google Scholar] [CrossRef]
- Van Der Kooi, C.J.; Reich, M.; Löw, M.; De Kok, L.J.; Tausz, M. Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops. Environ. Exp. Bot. 2016, 122, 150–157. [Google Scholar] [CrossRef]
- Loladze, I. Rising atmospheric CO2 and human nutrition: Toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 2002, 17, 457–461. [Google Scholar] [CrossRef]
- Dong, J.L.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z.Q. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ineson, P.; Scott, A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Chang. Biol. 1998, 4, 43–54. [Google Scholar] [CrossRef]
- Gifford, R.M.; Barrett, D.J.; Lutze, J.L. The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant Soil 2000, 224, 1–14. [Google Scholar] [CrossRef]
- LaNoue, J.; Leonardos, E.D.; Khosla, S.; Hao, X.; Grodzinski, B. Effect of elevated CO2 and spectral quality on whole plant gas exchange patterns in tomatoes. PLoS ONE 2018, 13, e0205861. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.H.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Arp, W.J. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 1991, 14, 869–875. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Tenhunen, J.D.; Canta, N.R.; Chaves, M.M.; Faria, T.; Pereira, J.S.; Reynolds, J.F. Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Glob. Chang. Biol. 1999, 5, 455–470. [Google Scholar] [CrossRef]
- Reich, P.B.; Hungate, B.A.; Luo, Y. Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 611–636. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Sáez, Á.; Erice, G.; Aranjuelo, I.; Nogués, S.; Irigoyen, J.J.; Sánchez-Díaz, M. Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J. Plant Physiol. 2010, 167, 1558–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M.; Bar-Tal, A.; Lugassi, N.; Egbaria, A.; Granot, D.; Yermiyahu, U. The Role of Nitrogen in Photosynthetic Acclimation to Elevated [CO2] in Tomatoes. Plant Soil 2019, 434, 397–411. [Google Scholar] [CrossRef]
- Duval, B.D.; Blankinship, J.C.; Dijkstra, P.; Hungate, B.A. CO2 Effects on Plant Nutrient Concentration Depend on Plant Functional Group and Available Nitrogen: A Meta-analysis. Plant Ecol. 2012, 213, 505–521. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X. Why are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the Hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef]
- Sardans, J.; Grau, O.; Chen, H.Y.H.; Janssens, I.A.; Ciais, P.; Piao, S.; Peñuelas, J. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Chang. Biol. 2017, 23, 3849–3856. [Google Scholar] [CrossRef]
- McDonald, E.P.; Erickson, J.E.; Kruger, E.L. Can Decreased Transpiration Limit Plant Nitrogen Acquisition in Elevated CO2? Funct. Plant Biol. 2002, 29, 1115–1120. [Google Scholar] [CrossRef]
- Mcgrath, J.M.; Lobell, D.B. Reduction of Transpiration and Altered Nutrient Allocation Contribute to the Nutrient Decline of Crops Grown in Elevated CO2 Concentrations. Plant Cell Environ. 2013, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M.; Krapp, A. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environ. 1999, 22, 583–621. [Google Scholar] [CrossRef]
- Davey, P.A.; Wadge, K.; Parsons, A.; Atkinson, L.; Long, S.P. Does photosynthetic acclimation to elevated CO2 increase photosynthetic nitrogen-use efficiency? A study of three native UK grassland species in open-top chambers. Funct. Ecol. 1999, 13, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.J.; Burger, M.; Asensio, J.S.R.; Cousins, A.B. Carbon Dioxide Enrichment Inhibits Nitrate Assimilation in Wheat and Arabidopsis. Science 2010, 328, 899–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, A.J.; Burger, M.; Kimball, B.A.; Pinter, J.P.J. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang. 2014, 4, 477–480. [Google Scholar] [CrossRef]
- Gruda, N.; Balliu, A.; Sallaku, G. Crop Technologies: Cucumber. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries—Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2017; Chapter 2 of Part III; pp. 287–300. [Google Scholar]
- Dong, J.; Li, X.; Chu, W.; Duan, Z. High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci. Hortic. 2017, 218, 275–283. [Google Scholar] [CrossRef]
- Agüera, E.; Ruano, D.; Cabello, P.; De La Haba, P. Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants. J. Plant Physiol. 2006, 163, 809–817. [Google Scholar] [CrossRef]
- Dong, J.L.; Xu, Q.; Gruda, N.; Chu, W.Y.; Li, X.; Duan, Z.Q. Elevated and Super-elevated CO2 Differ in Their Interactive Effect with Nitrogen Availability on Fruit Yield and Quality of Cucumber. J. Sci. Food Agric. 2018, 98, 4509–4516. [Google Scholar] [CrossRef]
- Li, X.; Dong, J.L.; Chu, W.Y.; Chen, Y.J.; Duan, Z.Q. The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant Soil 2018, 425, 415–432. [Google Scholar] [CrossRef]
- Li, X.; Chu, W.Y.; Dong, J.L.; Duan, Z.Q. An Improved High-performance Liquid Chromatographic Method for the Determination of Soluble Sugars in Root Exudates of Greenhouse Cucumber Grown under CO2 Enrichment. J. Am. Soc. Hortic. Sci. 2014, 139, 356–363. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.; Lorenzo, P.; Medrano, E.; Baille, A.; Castilla, N. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric. Water Manag. 2009, 96, 429–436. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production—A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.S.; Blanke, M.M. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K. Nutrient Solution Culture; Pak-Kyo Co.: Tokyo, Japan, 1982; p. 251. [Google Scholar]
- Zhao, F.; McGrath, S.P.; Crosland, A.R. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Commun. Soil Sci. Plant Anal. 1994, 25, 407–418. [Google Scholar] [CrossRef]
- Broberg, M.C.; Högy, P.; Feng, Z.; Pleijel, H. Effects of Elevated CO2 on Wheat Yield: Non-Linear Response and Relation to Site Productivity. Agronomy 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.P.; Cheng, F.; Zhou, Y.H.; Xia, X.J.; Shi, K.; Yu, J.Q. Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environ. Exp. Bot. 2012, 75, 98–106. [Google Scholar] [CrossRef]
- Hartz, T.; Baameur, A.; Holt, D. Carbon Dioxide Enrichment of High-value Crops under Tunnel Culture. J. Am. Soc. Hortic. Sci. 1991, 116, 970–973. [Google Scholar] [CrossRef] [Green Version]
- Slack, G.; Hand, D.W. The effect of winter and summer CO2 enrichment on the growth and fruit yield of glasshouse cucumber. J. Hortic. Sci. 1985, 60, 507–516. [Google Scholar] [CrossRef]
- Peterson, A.G.; Ball, J.T.; Luo, Y.; Field, C.B.; Reich, P.B.; Curtis, P.S.; Griffin, K.L.; Gunderson, C.A.; Norby, R.J.; Tissue, D.T.; et al. The photosynthesis—Leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: A meta-analysis. Glob. Chang. Biol. 1999, 5, 331–346. [Google Scholar] [CrossRef]
- Lee, T.D.; Tjoelker, M.G.; Ellsworth, D.S.; Reich, P.B. Leaf Gas Exchange Responses of 13 Prairie Grassland Species in the Field Under Elevated Carbon Dioxide and Increased Nitrogen Supply. New Phytol. 2001, 150, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Sage, R.F.; Sharkey, T.D.; Seemann, J.R. Acclimation of Photosynthesis to Elevated CO2 in Five C3 Species. Plant Physiol. 1989, 89, 590–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cure, J.D.; Acock, B. Crop responses to carbon dioxide doubling: A literature survey. Agric. For. Meteorol. 1986, 38, 127–145. [Google Scholar] [CrossRef]
- Saralabai, V.; Vivekanandan, M.; Babu, R.S. Plant Responses to High CO2 Concentration in the Atmosphere. Photosynthetica 1997, 33, 7–37. [Google Scholar] [CrossRef]
- Nederhoff, E.M.; De Graaf, R. Effects of CO2 on leaf conductance and canopy transpiration of greenhouse grown cucumber and tomato. J. Hortic. Sci. 1993, 68, 925–937. [Google Scholar] [CrossRef]
- Kimball, B.; Kobayashi, K.; Bindi, M. Responses of Agricultural Crops to Free-Air CO2 Enrichment. Adv. Agron. 2002, 77, 293–368. [Google Scholar]
- Song, X.D.; Zhou, G.S.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.L.; Yan, W.K.; Jiao, X.R. Nitrogen Application Improved Photosynthetic Productivity, Chlorophyll Fluorescence, Yield and Yield Components of Two Oat Genotypes under Saline Conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.H.; Runion, G.; Krupa, S.V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 1994, 83, 155–189. [Google Scholar] [CrossRef]
- Stitt, M. Nitrate Regulation of Metabolism and Growth. Curr. Opin. Plant Biol. 1999, 2, 178–186. [Google Scholar] [CrossRef]
- Stulen, I.; den Hertog, J. Root Growth and Functioning under Atmospheric CO2 Enrichment. Vegetatio 1993, 104, 99–115. [Google Scholar] [CrossRef]
- Lotfiomran, N.; Köhl, M.; Fromm, J. Interaction Effect between Elevated CO2 and Fertilization on Biomass, Gas Exchange and C/N Ratio of European Beech (Fagus sylvatica L.). Plants 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, J.; Deuchande, T.; Valente, L.M.; Pintado, M.; Vasconcelos, M.W. Growth and Nutritional Responses of Bean and Soybean Genotypes to Elevated CO2 in a Controlled Environment. Plants 2019, 8, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenka, N.K.; Lenka, S.; Singh, K.K.; Kumar, A.; Aher, S.B.; Yashona, D.S.; Dey, P.; Agrawal, P.K.; Biswas, A.K.; Patra, A.K. Effect of elevated carbon dioxide on growth, nutrient partitioning, and uptake of major nutrients by soybean under varied nitrogen application levels. J. Plant Nutr. Soil Sci. 2019, 182, 509–514. [Google Scholar] [CrossRef]
- Bieleski, R.L. Phosphate Pools, Phosphate Transport, and Phosphate Availability. Annu. Rev. Plant Physiol. 1973, 24, 225–252. [Google Scholar] [CrossRef]
- Hamburger, D.; Rezzonico, E.; Petétot, J.M.C.; Somerville, C.; Poirier, Y. Identification and Characterization of the Arabidopsis PHO1 Gene Involved in Phosphate Loading to the Xylem. Plant Cell 2002, 14, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Peet, M.M.; Huber, S.C.; Patterson, D.T. Acclimation to High CO2 in Monoecious Cucumbers: II. Carbon Exchange Rates, Enzyme Activities, and Starch and Nutrient Concentrations. Plant Physiol. 1986, 80, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Jauregui, I.; Aparicio-Tejo, P.M.; Avila, C.; Cañas, R.; Sakalauskiene, S.; Aranjuelo, I. Root-shoot Interactions Explain the Reduction of Leaf Mineral Content in Arabidopsis Plants Grown under Elevated [CO2] Conditions. Physiol. Plant 2016, 158, 65–79. [Google Scholar] [CrossRef]
- Blevins, D.G.; Barnett, N.M.; Frost, W.B. Role of Potassium and Malate in Nitrate Uptake and Translocation by Wheat Seedlings. Plant Physiol. 1978, 62, 784–788. [Google Scholar] [CrossRef] [Green Version]
- Triplett, E.W.; Barnett, N.M.; Blevins, D.G.; Reed, A.J.; Below, F.E.; Hageman, R.H. Organic Acids and Ionic Balance in Xylem Exudate of Wheat during Nitrate or Sulfate Absorption. Plant Physiol. 1980, 65, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.; Vasander, H.; Silvola, J. Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO2 concentrations. Plant Ecol. 1998, 138, 149–160. [Google Scholar] [CrossRef]
- Demarty, M.; Morvan, C.; Thellier, M. Calcium and the cell wall. Plant Cell Environ. 1984, 7, 441–448. [Google Scholar] [CrossRef]
N 1 Levels | Compounds (mmol L−1) | Elements (mmol L−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca(NO3)2 ∙4H2O | KNO3 | NH4H2PO4 | MgSO4 ∙7H2O | NH4NO3 | KH2PO4 | K2SO4 | Ca(H2PO4)2 ∙H2O | CaSO4 ∙2H2O | N | P | K | Ca | Mg | S | |||
Total-N | NH4+-N | NO3−-N | |||||||||||||||
N1 | 1 | - 2 | - | 2 | - | - | 3 | 0.5 | 2 | 2 | 0 | 2 | 1 | 6 | 3.5 | 2 | 7 |
N2 | 2 | - | - | 2 | - | - | 3 | 0.5 | 1 | 4 | 0 | 4 | 1 | 6 | 3.5 | 2 | 6 |
N3 | 3.5 | - | - | 2 | - | 1 | 2.5 | - | - | 7 | 0 | 7 | 1 | 6 | 3.5 | 2 | 4.5 |
N4 | 3.5 | 6 | 1 | 2 | - | - | - | - | - | 14 | 1 | 13 | 1 | 6 | 3.5 | 2 | 2 |
N5 | 3.5 | 6 | 1 | 2 | 3.5 | - | - | - | - | 21 | 4.5 | 16.5 | 1 | 6 | 3.5 | 2 | 2 |
Stage 1 | CO2 2 Level | N 3 Level | Dry Weight (g plant−1) | ||||
---|---|---|---|---|---|---|---|
Roots | Stems | Leaves | Total | Root/Shoot | |||
T1 | C1 | N1 | 0.081 ± 0.005 Aa 4 | 0.140 ± 0.012 Ab | 0.505 ± 0.020 Ab | 0.726 ± 0.022 Ab | 0.127 ± 0.010 Aa |
N2 | 0.080 ± 0.008 Ba | 0.162 ± 0.014 Bab | 0.618 ± 0.045 Ba | 0.860 ± 0.066 Bab | 0.102 ± 0.005 Bab | ||
N3 | 0.076 ± 0.006 Aa | 0.144 ± 0.009 Bb | 0.589 ± 0.026 Bab | 0.809 ± 0.036 Bab | 0.104 ± 0.007 Aab | ||
N4 | 0.070 ± 0.005 Ba | 0.158 ± 0.010 Bab | 0.639 ± 0.027 Ba | 0.867 ± 0.037 Ba | 0.089 ± 0.007 Ab | ||
N5 | 0.070 ± 0.008 Ba | 0.185 ± 0.013 Ba | 0.674 ± 0.035 Ba | 0.930 ± 0.045 Ba | 0.083 ± 0.011 Ab | ||
C2 | N1 | 0.104 ± 0.023 Aa | 0.174 ± 0.014 Ab | 0.550 ± 0.085 Ab | 0.828 ± 0.119 Ab | 0.138 ± 0.010 Aa | |
N2 | 0.112 ± 0.012 Aa | 0.209 ± 0.015 Aab | 0.726 ± 0.050 ABa | 1.047 ± 0.073 Aab | 0.118 ± 0.007 Aab | ||
N3 | 0.091 ± 0.007 Aa | 0.221 ± 0.017 Aab | 0.744 ± 0.048 Aa | 1.056 ± 0.069 Aab | 0.095 ± 0.004 Ac | ||
N4 | 0.088 ± 0.005 Ba | 0.227 ± 0.023 Aa | 0.749 ± 0.033 Ba | 1.064 ± 0.060 Bab | 0.091 ± 0.003 Ac | ||
N5 | 0.104 ± 0.008 Aa | 0.234 ± 0.012 ABa | 0.797 ± 0.059 Ba | 1.135 ± 0.070 Ba | 0.102 ± 0.010 Abc | ||
C3 | N1 | 0.111 ± 0.015 Aa | 0.166 ± 0.009 Ab | 0.560 ± 0.022 Ac | 0.837 ± 0.044 Ac | 0.151 ± 0.015 Aa | |
N2 | 0.108 ± 0.006 Aa | 0.218 ± 0.011 Ab | 0.772 ± 0.021 Ab | 1.098 ± 0.031 Ab | 0.108 ± 0.005 Ab | ||
N3 | 0.089 ± 0.017 Aa | 0.195 ± 0.020 Ab | 0.763 ± 0.070 Ab | 1.047 ± 0.102 Abc | 0.091 ± 0.011 Ab | ||
N4 | 0.122 ± 0.015 Aa | 0.281 ± 0.024 Aa | 0.970 ± 0.058 Aa | 1.373 ± 0.094 Aa | 0.096 ± 0.006 Ab | ||
N5 | 0.134 ± 0.015 Aa | 0.280 ± 0.028 Aa | 0.995 ± 0.078 Aa | 1.410 ± 0.112 Aa | 0.105 ± 0.007 Ab | ||
T2 | C1 | N1 | 0.298 ± 0.018 Ac | 0.982 ± 0.058 Ad | 1.546 ± 0.110 Ac | 2.826 ± 0.157 Ac | 0.119 ± 0.008 Aa |
N2 | 0.347 ± 0.031 Ac | 1.294 ± 0.068 Acd | 2.640 ± 0.175 Abc | 4.281 ± 0.268 Abc | 0.088 ± 0.004 Ac | ||
N3 | 0.401 ± 0.075 Bbc | 1.684 ± 0.194 Abc | 3.260 ± 0.507 Bab | 5.345 ± 0.770 Bab | 0.079 ± 0.004 Ac | ||
N4 | 0.551 ± 0.041 Aab | 2.101 ± 0.138 Aab | 4.076 ± 0.327 Ba | 6.728 ± 0.483 Ba | 0.091 ± 0.006 Abc | ||
N5 | 0.699 ± 0.102 Aa | 2.375 ± 0.334 Ba | 4.188 ± 0.611 Ba | 7.262 ± 1.034 Ba | 0.106 ± 0.006 Aab | ||
C2 | N1 | 0.222 ± 0.028 Bc | 0.700 ± 0.079 Bc | 1.157 ± 0.166 Ac | 2.079 ± 0.261 Bc | 0.120 ± 0.005 Aa | |
N2 | 0.310 ± 0.066 Abc | 1.264 ± 0.235 Abc | 2.256 ± 0.424 Abc | 3.830 ± 0.719 Abc | 0.087 ± 0.005 Ab | ||
N3 | 0.356 ± 0.059 Babc | 1.532 ± 0.259 Aabc | 3.405 ± 0.401 Bb | 5.294 ± 0.614 Bb | 0.073 ± 0.009 Ab | ||
N4 | 0.567 ± 0.151 Aab | 2.097 ± 0.442 Aab | 5.012 ± 0.730 Ba | 7.677 ± 1.274 Ba | 0.074 ± 0.011 Ab | ||
N5 | 0.635 ± 0.103 Aa | 2.254 ± 0.367 Ba | 5.117 ± 0.277 Ba | 8.006 ± 0.674 Ba | 0.084 ± 0.010 Ab | ||
C3 | N1 | 0.223 ± 0.020 Bb | 0.751 ± 0.068 Bc | 1.194 ± 0.143 Ab | 2.168 ± 0.220 Bc | 0.116 ± 0.007 Aa | |
N2 | 0.341 ± 0.038 Ab | 1.287 ± 0.149 Ac | 2.160 ± 0.265 Ab | 3.789 ± 0.436 Ac | 0.101 ± 0.007 Aab | ||
N3 | 0.729 ± 0.144 Aa | 2.571 ± 0.471 Ab | 5.728 ± 0.492 Aa | 9.028 ± 0.965 Ab | 0.084 ± 0.012 Ab | ||
N4 | 0.983 ± 0.195 Aa | 3.370 ± 0.687 Aab | 7.030 ± 0.729 Aa | 11.38 ± 1.52 Aab | 0.091 ± 0.011 Aab | ||
N5 | 0.902 ± 0.080 Aa | 4.199 ± 0.404 Aa | 7.248 ± 0.703 Aa | 12.35 ± 1.00 Aa | 0.082 ± 0.011 Ab | ||
C | *** 6 | *** | *** | *** | NS | ||
N | *** | *** | *** | *** | *** | ||
T | *** | *** | *** | *** | *** | ||
C × N | NS | * | *** | *** | NS | ||
C × T | ** | *** | *** | *** | NS | ||
N × T | *** | *** | *** | *** | NS | ||
C × N × T5 | NS | * | ** | ** | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dong, J.; Gruda, N.S.; Chu, W.; Duan, Z. Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages. Agronomy 2020, 10, 139. https://doi.org/10.3390/agronomy10010139
Li X, Dong J, Gruda NS, Chu W, Duan Z. Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages. Agronomy. 2020; 10(1):139. https://doi.org/10.3390/agronomy10010139
Chicago/Turabian StyleLi, Xun, Jinlong Dong, Nazim S. Gruda, Wenying Chu, and Zengqiang Duan. 2020. "Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages" Agronomy 10, no. 1: 139. https://doi.org/10.3390/agronomy10010139
APA StyleLi, X., Dong, J., Gruda, N. S., Chu, W., & Duan, Z. (2020). Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages. Agronomy, 10(1), 139. https://doi.org/10.3390/agronomy10010139