Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting
Abstract
:1. Introduction
2. Soil-Borne Diseases in Cucurbitaceous Crops
2.1. Soil-Borne Fungi
2.2. Plant-Parasitic Nematodes
3. Mechanism of Resistance to Soil-Borne Diseases
3.1. Soil-Borne Fungi
3.2. Plant-Parasitic Nematodes
4. Methods of Genetic Control
4.1. Traditional Breeding
4.2. Biotechnological Tools
4.2.1. Molecular Markers
4.2.2. Omics Analyses
4.2.3. Mutagenesis and Targeting Induced Local Lesions in Genomes (TILLING)
4.2.4. Transgenic Plants
4.2.5. CRISPR
4.3. Grafting
4.3.1. Grafting Cucumber
4.3.2. Grafting Melon
4.3.3. Grafting Watermelon
4.3.4. Other Possible Rootstocks
4.3.5. Effect of Grafting on Disease Severity and Crop Yield in Root-Knot Nematode-Infested Soils
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). New Food Balances. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 2 December 2019).
- Greco, N.; Aranda, J.L.; Saporiti, M.; Maccarini, C.; De Tommaso, N.; Myrta, A. Sustainability of European vegetable and strawberry production in relation to fumigation practices in the EU. Acta Hortic. 2020, 203–210. [Google Scholar] [CrossRef]
- Levi, A.; Thies, J.; Ling, K.-S.; Simmons, A.M.; Kousik, C.; Hassell, R. Genetic diversity among Lagenaria siceraria accessions containing resistance to root-knot nematodes, whiteflies, ZYMV or powdery mildew. Plant Genet. Resour. 2009, 7, 216–226. [Google Scholar] [CrossRef]
- Thies, J.A.; Ariss, J.J.; Hassell, R.L.; Olson, S.; Kousik, C.S.; Levi, A. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis. 2010, 94, 1195–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Ren, J.; Zhang, Y.; An, J.; Chen, M.; Chen, H.; Xu, C.; Ren, H. A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agron. Sustain. Dev. 2014, 35, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wu, S.; Bai, Y.; Sun, H.; Jiao, C.; Guo, S.; Zhao, K.; Blanca, J.; Zhang, Z.; Huang, S.; et al. Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res. 2018, 47, D1128–D1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.-G.; Huh, Y.-C.; Sun, Z.; Miguel, A.; King, S.R.; et al. Cucurbit Grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Koike, S.T.; Subbarao, K.V.; Davis, R.M.; Turini, T.A. Vegetable Diseases Caused by Soilborne Pathogens; UCANR Publications: Davis, CA, USA, 2003; pp. 1–13. [Google Scholar]
- Najafinia, M.; Sharma, P. Cross pathogenicity among isolates of Fusarium oxysporum causing wilt in cucumber and muskmelon. Indian Phytopathol. 2009, 62, 9–13. [Google Scholar]
- Chikh-Rouhou, H.; González-Torres, R.; Alvarez, J.M.; Oumouloud, A. Screening and morphological characterization of melons for resistance to Fusarium oxysporum f. sp. melonis race 1.2. HortScience 2010, 45, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Perchepied, L.; Pitrat, M. Polygenic inheritance of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in melon. Phytopathology 2004, 94, 1331–1336. [Google Scholar] [CrossRef] [Green Version]
- Edel-Hermann, V.; LeComte, C. Current status of Fusarium oxysporum formae speciales and races. Phytopathology 2019, 109, 512–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaee, S.; Gharanjik, S.; Mojerlou, S. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. J. Crop Prot. 2018, 7, 161–170. [Google Scholar]
- Hamdi, N.; Benfradj, N.; Salem, I.B.; Abad-Campos, P. Genetic diversity of Fusarium solani f. sp. cucurbitae the causal agent of crown and root rot of watermelon in Tunisia using ISSR markers. Nov. Res. Microbiol. J. 2019, 3, 271–280. [Google Scholar] [CrossRef]
- Deadman, M.; Al-Sadi, A.M.; Al Said, F.; Maawali, Q.A. The use of cucurbit hybrid rootstocks in the management of Pythium-induced damping-off of cucumber seedlings. Acta Hortic. 2010, 871, 483–490. [Google Scholar] [CrossRef]
- Mirmajlessi, S.M. Genetic diversity among crown and root rot isolates of Rhizoctonia solani isolated from cucurbits using PCR-based techniques. Afr. J. Agric. Res. 2012, 7, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Armengol, J.; Sanz, E.; Martínez-Ferrer, G.; Sales, R.; Bruton, B.D.; García-Jiménez, J. Host range of Acremonium cucurbitacearum, cause of Acremonium collapse of muskmelon. Plant Pathol. 1998, 47, 29–35. [Google Scholar] [CrossRef]
- Cohen, R.; Omari, N.; Porat, A.; Edelstein, M. Management of Macrophomina wilt in melons using grafting or fungicide soil application: Pathological, horticultural and economical aspects. Crop Prot. 2012, 35, 58–63. [Google Scholar] [CrossRef]
- Ambrósio, M.M.D.Q.; Dantas, A.C.A.; Martínez-Perez, E.; Medeiros, A.C.; Nunes, G.H.S.; Picó, B. Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica 2015, 206, 287–300. [Google Scholar] [CrossRef]
- Shishido, M.; Yoshida, N.; Usami, T.; Shinozaki, T.; Kobayashi, M.; Takeuchi, T. Black root rot of cucurbits caused by Phomopsis sclerotioides in Japan and phylogenetic grouping of the pathogen. J. Gen. Plant Pathol. 2006, 72, 220–227. [Google Scholar] [CrossRef]
- De Cara, M.; Fernández-Plaza, M.; Gómez-Vázquez, J. Pathogenic and biological characterization of Phytophthora capsici isolates from zucchini and pepper in Southeast Spain. Span. J. Agric. Res. 2018, 16, e1005. [Google Scholar] [CrossRef]
- Pivonia, S.; Cohen, R.; Katan, J.; Kigel, J. Effect of fruit load on the water balance of melon plants infected with Monosporascus cannonballus. Physiol. Mol. Plant Pathol. 2002, 60, 39–49. [Google Scholar] [CrossRef]
- De Cara, M.; López, V.; Córdoba, M.C.; Santos, M.; Jordá, C.; Tello, J.C. Association of Olpidium bornovanus and melon necrotic spot virus with vine decline of melon in Guatemala. Plant Dis. 2008, 92, 709–713. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; García-Luis, A. Colonisation and histological changes in muskmelon and autumn squash tissues infected by Acremonium cucurbitacearum or Monosporascus cannonballus. Eur. J. Plant Pathol. 2009, 125, 73–85. [Google Scholar] [CrossRef]
- Iglesias, A.; Nuez, F.; Picó, B. A temporal genetic analysis of disease resistance genes: Resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breed. 2000, 119, 329–334. [Google Scholar] [CrossRef]
- Farr, D.F.; Rossman, A.Y. Fungal Databases. Available online: https://nt.ars-grin.gov/fungaldatabases (accessed on 30 July 2020).
- Zhou, X.G.; Everts, K.L.; Bruton, B.D. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium Wilt in watermelon. Plant Dis. 2010, 94, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacciola, S.O.; Gullino, M.L. Emerging and re-emerging fungus and oomycete soil-borne plant diseases in Italy. Phytopathol. Mediterr. 2019, 58, 451–472. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; Talavera, M. Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): Pathogenicity and management. Crop Prot. 2019, 126, 104943. [Google Scholar] [CrossRef]
- Talavera, M.; Sayadi, S.; Chirosa-Ríos, M.; Salmerón, T.; Flor-Peregrín, E.; Verdejo-Lucas, S. Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology 2012, 14, 517–527. [Google Scholar] [CrossRef]
- Barker, K.R. Resistance/tolerance and related concepts/terminology in Plant Nematology. Plant Dis. 1993, 77, 111–113. [Google Scholar]
- Pofu, K.M.; Mashela, P.W.; Mokgalong, N.M. Host-status and host-sensitivity of Cucumis africanus and Cucumis myriocarpus to Meloidogyne incognita race 2 under greenhouse conditions. Afr. J. Agric. Res. 2010, 5, 1504–1508. [Google Scholar] [CrossRef]
- Chandra, P.; Sao, R.; Gautam, S.; Poddar, A. Initial population density and its effect on the pathogenic potential and population growth of the Root knot nematode Meloidogyne incognita in four species of cucurbits. Asian J. Plant Pathol. 2010, 4, 1–15. [Google Scholar] [CrossRef]
- López-Gómez, M.; Verdejo-Lucas, S. Penetration and reproduction of root-knot nematodes on cucurbit species. Eur. J. Plant Pathol. 2014, 138, 863–871. [Google Scholar] [CrossRef]
- Mukhtar, T.; Kayani, M.Z.; Hussain, M.A. Response of selected cucumber cultivars to Meloidogyne incognita. Crop Prot. 2013, 44, 13–17. [Google Scholar] [CrossRef]
- Diniz, G.M.M.; Candido, W.D.S.; Soares, R.S.; Santos, L.D.S.; Marin, M.V.; Soares, P.L.M.; Braz, L.T. Reaction of melon genotypes to Meloidogyne incognita and Meloidogyne javanica. Pesqui. Agropecuária Trop. 2016, 46, 111–115. [Google Scholar] [CrossRef] [Green Version]
- López-Gómez, M.; Flor-Peregrín, E.; Talavera, M.; Verdejo-Lucas, S. Suitability of zucchini and cucumber genotypes to populations of Meloidogyne arenaria, M. incognita, and M. javanica. J. Nematol. 2015, 47, 79–85. [Google Scholar]
- Talavera-Rubia, M.; Fernández-Plaza, M.; Verdejo-Lucas, S.; Vela, M.D. Susceptibilidad y tolerancia del calabacín (Cucurbita pepo) a Meloidogyne incognita y M. javanica. Phytoma España 2018, 295, 42–46. [Google Scholar]
- Verdejo-Lucas, S.; Gómez, P.; Talavera, M. Pathogenicity of Meloidogyne incognita and M. javanica on recombinant inbred lines from a crossing of Cucurbita pepo subsp. pepo × C. pepo subsp. ovifera. Plant Pathol. 2019, 68, 1225–1232. [Google Scholar] [CrossRef]
- Desaeger, J.A.; Csinos, A.S. Root-knot nematode management in double-cropped plasticulture vegetables. J. Nematol. 2006, 38, 59–67. [Google Scholar]
- Cohen, R.; Tyutyunik, J.; Fallik, E.; Oka, Y.; Tadmor, Y.; Edelstein, M. Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Sci. Hortic. 2014, 165, 203–210. [Google Scholar] [CrossRef]
- López-Gómez, M.; Talavera, M.; Verdejo-Lucas, S. Differential reproduction of Meloidogyne incognita and M. javanica in watermelon cultivars and cucurbit rootstocks. Plant Pathol. 2015, 65, 145–153. [Google Scholar] [CrossRef]
- López-Gómez, M.; Verdejo-Lucas, S. Penetration and post-infection development of root-knot nematodes in watermelon. Span. J. Agric. Res. 2018, 15, e1010. [Google Scholar] [CrossRef] [Green Version]
- Verdejo-Lucas, S.; Talavera, M. Pathogenic potential, parasitic success and host efficiency of Meloidogyne incognita and M. javanica on cucurbitaceous plant genotypes. Eur. J. Plant Pathol. 2018, 153, 1287–1297. [Google Scholar] [CrossRef]
- Salata, A.D.C.; Bertolini, E.V.; Magro, F.O.; Cardoso, A.I.; Wilcken, S.R.S. Enxertia e sua influência na produção de pepino e reprodução de Meloidogyne javanica e M. incognita. Hortic. Bras. 2012, 30, 590–594. [Google Scholar] [CrossRef] [Green Version]
- Djian-Caporalino, C.; Molinari, S.; Palloix, A.; Ciancio, A.; Fazari, A.; Marteu, N.; Ris, N.; Castagnone-Sereno, P. The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur. J. Plant Pathol. 2011, 131, 431–440. [Google Scholar] [CrossRef]
- Edelstein, M.; Oka, Y.; Burger, Y.; Eizenberg, H.; Cohen, R. Variation in the response of cucurbits to Meloidogyne incognita and M. javanica. Isr. J. Plant Sci. 2010, 58, 77–84. [Google Scholar] [CrossRef]
- Seinhorst, J. The relation between nematode density and damage to plants. Nematology 1965, 11, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Westphal, A. Predicting damage of Meloidogyne incognita on watermelon. J. Nematol. 2012, 44, 127–133. [Google Scholar]
- López-Gómez, M.; Giné, A.; Vela, M.; Ornat, C.; Sorribas, F.J.; Talavera, M.; Verdejo-Lucas, S. Damage functions and thermal requirements of Meloidogyne javanica and Meloidogyne incognita on watermelon. Ann. Appl. Biol. 2014, 165, 466–473. [Google Scholar] [CrossRef]
- Thies, J.A.; Levi, A. Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to Root-knot nematodes. HortScience 2007, 42, 1530–1533. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.A.; McKenry, M.V. Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pak. J. Zool. 2010, 42, 135–141. [Google Scholar]
- Davis, R.F. Effect of Meloidogyne incognita on watermelon yield. Nematropica 2007, 37, 287–293. [Google Scholar]
- Seinhorst, J. The relationships between population increase and population density in plant parasitic nematodes. Nematology 1967, 13, 429–442. [Google Scholar] [CrossRef]
- Gill, U.S.; Lee, S.; Mysore, K.S. Host versus nonhost resistance: Distinct wars with similar arsenals. Phytopathology 2015, 105, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nat. Cell Biol. 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit-Houdenot, Y.; Fudal, I. Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Front. Plant Sci. 2017, 8, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerschmidt, R.; Bonnen, A.M.; Bergstrom, G.C.; Baker, K.K. Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Can. J. Bot. 1985, 63, 2393–2398. [Google Scholar] [CrossRef]
- Chen, M.; Wang, G.; Wu, D.; Cheng, Y. Histopathological differences between cucumber cultivars with different resistances to Fusarium wilt. J. South China Agric. Univ. Sci. Ed. 2003, 24, 110–112. [Google Scholar]
- Mahjoub, M.E.; Le Picard, D.; Moreau, M. Origin of Tyloses in Melon (Cucumis melo L.) in response to a vascular Fusarium. IAWA J. 1984, 5, 307–311. [Google Scholar] [CrossRef]
- Miao, C.; Shang, F.; Jiang, J. Cytology study on the Fusarium wilt disease resistance in watermelon. J. Sichuan Univ. 2004, 41, 877–880. [Google Scholar]
- Moghbeli, E.; Nemati, H.; Aroiee, H.; Olfati, J.-A. Evaluation of resistance, enzymatic response, and phenolic compounds in roots of F1 cucumber hybrids to Fusarium oxysporum f. sp. radicis-cucumerinum. J. Hortic. Res. 2017, 25, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Sahebani, N.; Hadavi, N.S.; Zade, F.O. The effects of β-amino-butyric acid on resistance of cucumber against root-knot nematode, Meloidogyne javanica. Acta Physiol. Plant. 2010, 33, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Buzi, A.; Chilosi, G.; Magro, P. Induction of resistance in melon seedlings against soil-borne fungal pathogens by gaseous treatments with methyl jasmonate and ethylene. J. Phytopathol. 2004, 152, 491–497. [Google Scholar] [CrossRef]
- Mahdy, A.; Abd-El-Mageed, M.; Abd-El-Latif, F.; Diab, M.; Saied, N. Induction of resistance in watermelon plants against Fusarium wilt using chemical inducers and compost under greenhouse conditions. Egypt. J. Phytopathol. 2015, 42, 1–19. [Google Scholar] [CrossRef]
- Ye, D.-Y.; Qi, Y.-H.; Cao, S.-F.; Wei, B.-Q.; Zhang, H.-S. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus. J. Plant Physiol. 2017, 212, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvi, N.; Pugalendhi, L.; Sivakumar, M. Defence responses of cucurbitaceous rootstocks and bitter gourd scions against root knot nematode Meloidogyne incognita Kofoid and White. Vegetos Int. J. Plant Res. 2016, 29, 122. [Google Scholar] [CrossRef]
- Punja, Z.K. Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis. 1996, 80, 999. [Google Scholar] [CrossRef]
- Derbalah, A.; Elsharkawy, M.M.; Hamza, A.; El-Shaer, A. Resistance induction in cucumber and direct antifungal activity of zirconium oxide nanoparticles against Rhizoctonia solani. Pestic. Biochem. Physiol. 2019, 157, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Zvirin, T.; Herman, R.; Brotman, Y.; Denisov, Y.; Belausov, E.; Freeman, S.; Perl-Treves, R. Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1·2. Plant Pathol. 2010, 59, 576–585. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, J.H.; Liu, G.; Yao, X.F.; Li, P.F.; Yang, X.P. Characterization of the watermelon seedling infection process by Fusarium oxysporum f. sp. niveum. Plant Pathol. 2015, 64, 1076–1084. [Google Scholar] [CrossRef]
- Chérif, M.; Menzies, J.; Ehret, D.; Bogdanoff, C.; Bélanger, R. Yield of cucumber infected with Pythium aphanidermatum when grown with soluble silicon. HortScience 1994, 29, 896–897. [Google Scholar] [CrossRef]
- Guan, W.; Zhao, X.; Hassell, R.; Thies, J. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 2012, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.-F.L.; Hsu, C.-C.; Lin, Y.-H.; Chen, K.-S.; Huang, J.-W.; Liou, T.-D. Histopathology comparison and phenylalanine ammonia lyase (PAL) gene expressions in Fusarium wilt infected watermelons. Aust. J. Agric. Res. 2008, 59, 1146–1155. [Google Scholar] [CrossRef]
- Chen, C.; Bélanger, R.R.; Benhamou, N.; Paulitz, T.C. Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur. J. Plant Pathol. 1999, 105, 477–486. [Google Scholar] [CrossRef]
- Mohamed, G.; Amer, S. Application of salicylic acid and some fungicides as seed treatment for controlling damping-off and root rot diseases of squash and cantaloupe plants under field conditions. J. Plant Prot. Pathol. 2014, 5, 1025–1043. [Google Scholar] [CrossRef]
- Koné, D.; Csinos, A.; Jackson, K.; Ji, P. Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Prot. 2009, 28, 533–538. [Google Scholar] [CrossRef]
- Aleandri, M.P.; Reda, R.; Tagliavento, V.; Magro, P.; Chilosi, G. Effect of chemical resistance inducers on the control of Monosporascus root rot and vine decline of melon. Phytopathol. Mediterr. 2010, 49, 18–26. [Google Scholar] [CrossRef]
- Ongena, M.; Daayf, F.; Jacques, P.; Thonart, P.; Benhamou, N.; Paulitz, T.; Bélanger, R.R. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol. 2000, 49, 523–530. [Google Scholar] [CrossRef]
- Ntui, V.O.; Thirukkumaran, G.; Azadi, P.; Khan, R.S.; Nakamura, I.; Mii, M. Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep. 2010, 29, 943–954. [Google Scholar] [CrossRef]
- Prasannath, K. Plant defense-related enzymes against pathogens: A review. Agrieast J. Agric. Sci. 2017, 11, 38–48. [Google Scholar] [CrossRef]
- Palaniyandi, S.A.; Yang, S.H.; Zhang, L.; Suh, J.-W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [Google Scholar] [CrossRef]
- El-Tarabily, K.A. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can. J. Bot. 2006, 84, 211–222. [Google Scholar] [CrossRef]
- Chen, F.; Wang, M.; Zheng, Y.; Luo, J.; Yang, X.; Wang, X. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J. Microbiol. Biotechnol. 2009, 26, 675–684. [Google Scholar] [CrossRef]
- Segarra, G.; Casanova, E.; Bellido, D.; Odena, M.A.; Oliveira, E.; Trillas, I. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 2007, 7, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Cucurbit Genetics Cooperative Cucurbit Breeding Cooperative Gene List. Available online: http://cuke.hort.ncsu.edu/cgc/cgcgenes/genelists.html (accessed on 30 July 2020).
- Padley, L.D.; Kabelka, E.A.; Roberts, P.D. Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience 2009, 44, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Netzer, D. A dominant gene conferring resistance to Fusarium wilt in cucumber. Phytopathology 1977, 77, 525. [Google Scholar] [CrossRef] [Green Version]
- Vakalounakis, D.J.; Smardas, K. Genetics of resistance to Fusarium oxysporum f. sp. cucumerinum races 1 and 2 in cucumber line Wisconsin-2757. Ann. Appl. Biol. 1995, 127, 457–461. [Google Scholar] [CrossRef]
- Zhang, S.-P.; Miao, H.; Yang, Y.-H.; Xie, B.-Y.; Wang, Y.; Gu, X.-F. A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol. Breed. 2014, 34, 1805–1815. [Google Scholar] [CrossRef]
- Risser, G. Etude de l’hérédité de la résistance du melon (Cucumis melo) aux races 1 et 2 de Fusarium oxysporum f. sp. melonis. Ann. L’amélioration Plantes 1973, 23, 259–263. [Google Scholar]
- Oumouloud, A.; El-Otmani, M.; Chikh-Rouhou, H.; Garcés-Claver, A.; Torres, R.G.; Perl-Treves, R.; Alvarez, J.M. Breeding melon for resistance to Fusarium wilt: Recent developments. Euphytica 2013, 192, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Herman, R.; Zvirin, Z.; Kovalski, I.; Freeman, S.; Denisov, Y.; Zuri, G.; Katzir, N.; Perl-Treves, R. Characterization of Fusarium race 1.2 resistance in melon and mapping of a major QTL for this trait near a fruit netting locus. Cucurbitaceae 2008, 2008, 149–156. [Google Scholar]
- Oumouloud, A.; Arnedo-Andrés, M.S.; González-Torres, R.; Alvarez, J.M. Inheritance of resistance to Fusarium oxysporum f. sp. melonis races 0 and 2 in melon accession Tortuga. Euphytica 2010, 176, 183–189. [Google Scholar] [CrossRef]
- Elkabetz, M.; Paris, H.S.; Burger, Y.; Hanan, A.; Cohen, R. Two genes for resistance to Fusarium oxysporum f. sp. radicis-cucumerinum in melon (Cucumis melo, Cucurbitaceae). Sci. Hortic. 2016, 201, 57–60. [Google Scholar] [CrossRef]
- Netzer, D. Inheritance of resistance in watermelon to race 1 of Fusarium oxysporum f. sp. niveum. Plant Dis. 1980, 64, 853. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Miyagi, M. Chromosomal location and mode of inheritance of a gene conferring resistance to fusarium wilt in Cucumis anguria L. J. Hortic. Sci. Biotechnol. 2012, 87, 539–544. [Google Scholar] [CrossRef]
- Walters, S.A.; Wehner, T.C.; Barker, K.R. NC-42 and NC-43: Root-knot nematode–resistant cucumber germplasm. HortScience 1996, 31, 1246–1247. [Google Scholar] [CrossRef] [Green Version]
- Walters, S.A.; Wehner, T.C.; Barker, K.R. A Single recessive gene for resistance to the Root-knot nematode (Meloidogyne javanica) in Cucumis sativus var. hardwlckii. J. Hered. 1997, 88, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Talavera, M.; De Luque, A.P.; López-Gómez, M.; Verdejo-Lucas, S. Differential feeding site development and reproductive fitness of Meloidogyne incognita and M. javanica on zucchini, a source of resistance to M. incognita. Nematology 2018, 20, 187–199. [Google Scholar] [CrossRef]
- Ayala, A. Evaluación de la tolerancia a Fusarium solani f. sp. cucurbitae y Phytophthora capsici en variedades comerciales y conservadas del género Cucurbita. In Proceedings of the Libro de Actas del II Congreso de Jóvenes Investigadores de Ciencias Agroalimentarias, Almería, Spain, 17–19 October 2019. [Google Scholar]
- Ye, D.Y.; Qian, C.T.; Kurowski, C. Identification of a novel source of resistance to the root-knot nematode Meloidogyne incognita in Cucumis. Russ. J. Nematol. 2012, 20, 45–51. [Google Scholar]
- Thies, J.A.; Ariss, J.J.; Hassell, R.L.; Buckner, S.; Levi, A. Accessions of Citrullus lanatus var. citroides are valuable rootstocks for grafted watermelon in fields infested with Root-knot nematodes. HortScience 2015, 50, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Expósito, A.; Munera, M.; Giné, A.; López-Gómez, M.; Cáceres, A.; Picó, B.; Gisbert, C.; Medina, V.; Sorribas, F.J. Cucumis metuliferus is resistant to root-knot nematode Mi1.2 gene (a)virulent isolates and a promising melon rootstock. Plant Pathol. 2018, 67, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Faske, T.R. Penetration, post-penetration development, and reproduction of Meloidogyne incognita on Cucumis melo var. texanus. J. Nematol. 2013, 45, 58–65. [Google Scholar] [PubMed]
- Cardin, M.C. Influence of temperature on the relationships of Meloidogyne hapla with cucumber roots. Rev. Nématologie 1979, 2, 169–175. [Google Scholar]
- Wehner, T.C.; Walters, S.A.; Barker, K.R. Resistance to Root-knot nematodes in cucumber and horned cucumber. J. Nematol. 1991, 23, 611–614. [Google Scholar] [PubMed]
- Miller, J.G.; Faske, T.R. Post-penetration response of Meloidogyne incognita on Cucurbita foetidissima (Buffalo gourd). Nematropica 2015, 45, 178–183. [Google Scholar]
- Chavez, D.J.; Kabelka, E.A.; Chaparro, J.X. Screening of Cucurbita moschata Duchesne Germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortScience 2011, 46, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Crosby, K.M. Screening Cucumis melo L. agrestis germplasm for resistance to Monosporascus cannonballus. Subtrop. Plant Sci. 2001, 53, 24–26. [Google Scholar]
- Herman, R.; Perl-Treves, R. Characterization and inheritance of a new source of resistance to Fusarium oxysporum f. sp. melonis Race 1.2 in Cucumis melo. Plant Dis. 2007, 91, 1180–1186. [Google Scholar] [CrossRef]
- Jo, E.J.; Lee, J.H.; Choi, Y.H.; Kim, J.-C.; Choi, G.J. Development of an efficient method of screening for watermelon plants resistant to Fusarium oxysporum f. sp. niveum. Korean J. Hortic. Sci. Technol. 2015, 33, 409–419. [Google Scholar] [CrossRef]
- Kabelka, E.; Padley, L.; Roberts, P.; Ramos, L.; Martinez, M.; Klassen, W. Resistance to Phytophthora capsici within winter squash (Cucurbita moschata) derived from a wild Cucurbita species. Proc. Am. Soc. Hortic. Sci. 2007, 42, 1014. [Google Scholar]
- El-Wanis, A.B.D.; Mona, M.; Amin, A.W.; Abdel Rahman, T.G. Evaluation of some cucurbitaceous rootstocks 2-effect of cucumber grafting using some rootstocks on growth, yield and its relation with root-knot nematode Meloidogyne incognita and Fusarium wilt, infection. Egypt. J. Agric. Res. 2013, 91, 235–257. [Google Scholar]
- Portagrano. Vademécum de Semillas. Available online: http://www.portagrano.net/home/ (accessed on 30 September 2020).
- Dias, R.D.C.S.; Pico, B.; Espinos, A.; Nuez, F. Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: Genetic analysis of root structure and root response. Plant Breed. 2004, 123, 66–72. [Google Scholar] [CrossRef]
- Fita, A.; Picó, B.; Dias, R.C.; Nuez, F. ‘Piel de Sapo’ Breeding lines tolerant to melon vine decline. HortScience 2009, 44, 1458–1460. [Google Scholar] [CrossRef] [Green Version]
- Sousaraei, N.; Ramshini, H.; Lotfi, M.; Sharzei, A. Marker assisted backcrossing for introgression of Fusarium wilt resistance gene into melon. Euphytica 2017, 214, 7. [Google Scholar] [CrossRef]
- Kantoglu, Y.; Seçer, E.; Tutluer, I.; Kunter, B.; Peskircioglu, H.; Sagel, Z.; Erzurum, K. Improving tolerance to Fusarium oxysporum f. sp. melonis in melon using tissue culture and mutation techniques. In Mass Screening Techniques for Selecting Crops Resistant to Disease; IAEA: Vienna, Austria, 2010; pp. 235–244. [Google Scholar]
- Zhang, M.; Yu, T.; Yang, J.; Mao, B.; He, Z. Transformation of glucanase and chitinase genes to watermelon mediated by Agrobacterium tumefaciens. J. Fruit Sci. 2006, 3. [Google Scholar]
- Zhang, M.; Liu, Q.; Yang, X.; Xu, J.; Liu, G.; Yao, X.; Ren, R.; Xu, J.; Lou, L. CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f. sp. niveum. Plant Cell Rep. 2020, 39, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Oumouloud, A.; Arnedo-Andres, M.S.; González-Torres, R.; Alvarez, J.M. Development of molecular markers linked to the Fom-1 locus for resistance to Fusarium race 2 in melon. Euphytica 2008, 164, 347–356. [Google Scholar] [CrossRef]
- Brotman, Y.; Kovalski, I.; Dogimont, C.; Pitrat, M.; Portnoy, V.; Katzir, N.; Perl-Treves, R. Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon. Theor. Appl. Genet. 2004, 110, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Devran, Z.; Firat, A.F.; Tör, M.; Mutlu, N.; Elekçioğlu, I.H. AFLP and SRAP markers linked to the mj gene for root-knot nematode resistance in cucumber. Sci. Agric. 2011, 68, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Tezuka, T.; Waki, K.; Yashiro, K.; Kuzuya, M.; Ishikawa, T.; Takatsu, Y.; Miyagi, M. Construction of a linkage map and identification of DNA markers linked to Fom-1, a gene conferring resistance to Fusarium oxysporum f. sp. melonis race 2 in melon. Euphytica 2009, 168, 177–188. [Google Scholar] [CrossRef]
- Baudracco-Arnas, S.; Pitrat, M. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor. Appl. Genet. 1996, 93, 57–64. [Google Scholar] [CrossRef]
- Zheng, X.; Wolff, D.W. Randomly Amplified Polymorphic DNA Markers linked to Fusarium wilt resistance in diverse melons. HortScience 2000, 35, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wolff, D.W.; Baudracco-Arnas, S.; Pitrat, M. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.). Theor. Appl. Genet. 1999, 99, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Thomas, C.E.; Dean, R.A. Genetic mapping of a Fusarium wilt resistance gene (Fom-2) in melon (Cucumis melo L.). Mol. Breed. 2000, 6, 379–389. [Google Scholar] [CrossRef]
- Burger, Y.; Katzir, N.; Tzuri, G.; Portnoy, V.; Saar, U.; Shriber, S.; Perl-Treves, R.; Cohen, R. Variation in the response of melon genotypes to Fusarium oxysporum f. sp. melonis race 1 determined by inoculation tests and molecular markers. Plant Pathol. 2003, 52, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Yong, X.; Xin-Xing, O.; Hai-Ying, Z.; Guo-Bin, K.; Yong-Jian, W.; Hang, C. Identification of a RAPD marker linked to Fusarium wilt resistant gene in wild watermelon germplasm (Citrullus lanatus var. citroides). J. Integr. Plant Biol. 1999, 41. [Google Scholar]
- Esteras, C.; Gómez, P.; Monforte, A.J.; Blanca, J.; Vicente-Dolera, N.; Roig, C.; Nuez, F.; Picó, B. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012, 13, 80. [Google Scholar] [CrossRef] [Green Version]
- Branham, S.E.; Levi, A.; Farnham, M.W.; Wechter, W.P. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. Theor. Appl. Genet. 2016, 130, 319–330. [Google Scholar] [CrossRef]
- Meru, G.; McGregor, C. Genotyping by sequencing for SNP discovery and genetic mapping of resistance to race 1 of Fusarium oxysporum in watermelon. Sci. Hortic. 2016, 209, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xu, J.; Xu, X.; Xu, Q.; Chen, X.-H. Inheritance and quantitative trait locus mapping of Fusarium wilt resistance in cucumber. Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Brotman, Y.; Normantovich, M.; Goldenberg, Z.; Zvirin, Z.; Kovalski, I.; Stovbun, N.; Doniger, T.; Bolger, M.E.; Troadec, C.; Bendahmane, A.; et al. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol. Plant 2013, 6, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Morata, J.; Puigdomènech, P. Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genom. 2017, 18, 138. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z.; et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2012, 45, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joobeur, T.; King, J.J.; Nolin, S.J.; Thomas, C.E.; Dean, R.A. The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004, 39, 283–297. [Google Scholar] [CrossRef]
- Roig, C.; Fita, A.; Ríos, G.; Hammond, J.P.; Nuez, F.; Picó, B. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genom. 2012, 13, 601. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, R.; Chao, J.; Lin, Y.; Jin, Q.; He, X.; Luo, S.; Wu, T. The expression patterns of Cucumis sativus WRKY (CsWRKY) family under the condition of inoculation with Phytophthora melonis in disease resistant and susceptible cucumber cultivars. Can. J. Plant Sci. 2015, 95, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Meng, K.X.; Hao, Y.H.; Fan, H.Y.; Cui, N.; Wang, S.S.; Song, T.F. Comparative proteomic analysis of cucumber roots infected by Fusarium oxysporum f. sp. cucumerium Owen. Physiol. Mol. Plant Pathol. 2016, 96, 77–84. [Google Scholar] [CrossRef]
- Robb, J.; Castroverde, C.D.M.; Nazar, R.N. Defense Genes in Tomato; Nova Science Publishers: Hauppauge, NY, USA, 2010; ISBN 9781616688875. [Google Scholar]
- Narusaka, M.; Kubo, Y.; Hatakeyama, K.; Imamura, J.; Ezura, H.; Nanasato, Y.; Tabei, Y.; Takano, Y.; Shirasu, K.; Narusaka, Y. Interfamily transfer of dual NB-LRR genes confers resistance to multiple Pathogens. PLoS ONE 2013, 8, e55954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, D.; Jiang, Y.; Wang, C.; Roberts, P.A. Expression analysis of microRNAs and their target genes in Cucumis metuliferus infected by the root-knot nematode Meloidogyne incognita. Physiol. Mol. Plant Pathol. 2020, 111, 101491. [Google Scholar] [CrossRef]
- Pathirana, R. Plant mutation breeding in agriculture. CAB Rev. Perspect. Agric. Veter Sci. Nutr. Nat. Resour. 2011, 6, 6. [Google Scholar] [CrossRef]
- Niu, X.; Zhao, X.; Ling, K.-S.; Levi, A.; Sun, Y.; Fan, M. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum-watermelon pathosystem. Sci. Rep. 2016, 6, 28146. [Google Scholar] [CrossRef] [PubMed]
- Nieto, C.; Piron, F.; Dalmais, M.; Marco, C.F.; Moriones, E.; Gómez-Guillamón, M.L.; Truniger, V.; Gómez, P.; Garcia-Mas, J.; Aranda, M.; et al. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 2007, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Dólera, N.; Troadec, C.; Moya, M.; Del Río-Celestino, M.; Pomares-Viciana, T.; Bendahmane, A.; Picó, B.; Román, B.; Gómez, P. First TILLING Platform in Cucurbita pepo: A new mutant resource for gene function and crop improvement. PLoS ONE 2014, 9, e112743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraenkel, R.; Kovalski, I.; Troadec, C.; Bendahmane, A.; Perl-Treves, R. Development and evaluation of a cucumber TILLING population. BMC Res. Notes 2014, 7, 846. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.; Xu, M.; Esteras, C.; Roig, C.; Monforte, A.J.; Troadec, C.; Pujol, M.; Nuez, F.; Bendahmane, A.; Garcia-Mas, J.; et al. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res. Notes 2011, 4, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.M.; Lukasiewicz, J.; Farrer, R.A.; Van Dam, P.; Bertoldo, C.; Rep, M. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. New Phytol. 2015, 209, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Zaidi, S.S.-E.-A.; Tashkandi, M.; Mahfouz, M.M. A Simplified Method to Engineer CRISPR/Cas9-Mediated Geminivirus Resistance in Plants. In Advanced Structural Safety Studies; Springer Science and Business Media LLC: Berlin, Germany, 2019; Volume 2028, pp. 167–183. [Google Scholar]
- Giné, A.; López-Gómez, M.; Vela, M.D.; Ornat, C.; Talavera, M.; Verdejo-Lucas, S.; Sorribas, F.J. Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathol. 2014, 63, 1446–1453. [Google Scholar] [CrossRef]
- Rostami, F.; Alaei, H.; Reza, H.K.; Abad, A.B. Controlling the root and stem rot of cucumber, caused by Pythium aphanidermatum, using resistance cultivars and grafting onto the cucurbit rootstocks. Azarian J. Agric. 2015, 2, 19–24. [Google Scholar]
- Yamaguchi, T.; Iwadate, Y. Adaptability of several cucurbit plants for use as rootstocks to prevent cucumber black root rot caused by Phomopsis sclerotioides. Annu. Rep. Soc. Plant Prot. North Japan 2009, 2009, 96–101. [Google Scholar] [CrossRef]
- Pavlou, G.C.; Vakalounakis, D.J.; Ligoxigakis, E.K. Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis. 2002, 86, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.W.; El-Wanis, A. Protecting cucumber against root-knot nematode, Meloidogyne incognita using grafting onto resistant cucurbit rootstocks and interplanted Tagetes spp. as an alternative to Cadusafos nematicide under protected plastichouse conditions. Middle East J. Agric. Res. 2014, 3, 167–175. [Google Scholar]
- Ban, S.G.; Žanić, K.; Dumicic, G.; Raspudic, E.; Selak, G.V.; Ban, D. Growth and yield of grafted cucumbers in soil infested with root-knot nematodes. Chil. J. Agric. Res. 2014, 74, 29–34. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N.; Butler, D.M.; Hong, J.C.; Bausher, M.G.; McCollum, G.; Rosskopf, E.N. Grafting and Paladin Pic-21 for nematode and weed management in vegetable production. J. Nematol. 2016, 48, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.A.; Levi, A.; Ariss, J.J.; Hassell, R.L. RKVL-318, a Root-knot nematode-resistant watermelon line as rootstock for grafted watermelon. HortScience 2015, 50, 141–142. [Google Scholar] [CrossRef]
- Giné, A.; González, C.; Serrano, L.; Sorribas, F.J. Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur. J. Plant Pathol. 2017, 148, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Sigüenza, C.; Schochow, M.; Turini, T.; Ploeg, A. Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. J. Nematol. 2005, 37, 276–280. [Google Scholar]
- Guan, W.; Zhao, X.; Dickson, D.W.; Mendes, M.L.; Thies, J. Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto Cucumis metulifer. HortScience 2014, 49, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Nisini, P.T.; Colla, G.; Granati, E.; Temperini, O.; Crinò, P.; Saccardo, F. Rootstock resistance to Fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Sci. Hortic. 2002, 93, 281–288. [Google Scholar] [CrossRef]
- Crinò, P.; Bianco, C.L.; Rouphael, Y.; Colla, G.; Saccardo, F.; Paratore, A. Evaluation of rootstock resistance to Fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ Melon. HortScience 2007, 42, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Castro, G.; Perpiñá, G.; Esteras, C.; Armengol, J.; Picó, B.; Pérez-De-Castro, A. Resistance in melon to Monosporascus cannonballus and M. eutypoides: Fungal pathogens associated with Monosporascus root rot and vine decline. Ann. Appl. Biol. 2020, 177, 101–111. [Google Scholar] [CrossRef]
- Kim, D.; Ferris, H. Relationship between crop losses and initial population densities of Meloidogyne arenaria in Winter-Grown Oriental Melon in Korea. J. Nematol. 2002, 34, 43–49. [Google Scholar]
- Vela, M.D.; Giné, A.; López-Gómez, M.; Sorribas, F.J.; Ornat, C.; Verdejo-Lucas, S.; Talavera, M. Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. Eur. J. Plant Pathol. 2014, 140, 481–490. [Google Scholar] [CrossRef]
- Yetışır, H.; Sari, N.; Yücel, S. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasit 2003, 31, 163–169. [Google Scholar] [CrossRef]
- Miguel, A.; Maroto, J.; Bautista, A.S.; Baixauli, C.; Cebolla, V.; Pascual, B.; Lopez, S.; Guardiola, J. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hortic. 2004, 103, 9–17. [Google Scholar] [CrossRef]
- Kousik, C.S.; Donahoo, R.S.; Hassell, R. Resistance in watermelon rootstocks to crown rot caused by Phytophthora capsici. Crop Prot. 2012, 39, 18–25. [Google Scholar] [CrossRef]
- Armengol, J.; José, C.M.; Moya, M.J.; Sales, R.; Vicent, A.; García-Jiménez, J. Fusarium solani f. sp. cucurbitae race 1, a potential pathogen of grafted watermelon production in Spain. EPPO Bull. 2000, 30, 179–183. [Google Scholar] [CrossRef]
- Keinath, A.P.; Wechter, W.P.; Rutter, W.B.; Agudelo, P.A. Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. niveum remain resistant when coinfected by Meloidogyne incognita in the field. Plant Dis. 2019, 103, 1383–1390. [Google Scholar] [CrossRef]
- Wechter, W.P.; Kousik, C.; McMillan, M.; Levi, A. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 2012, 47, 334–338. [Google Scholar] [CrossRef] [Green Version]
- García-Mendívil, H.A.; Munera, M.; Giné, A.; Escudero, N.; Picó, M.B.; Gisbert, C.; Sorribas, F.J. Response of two Citrullus amarus accessions to isolates of three species of Meloidogyne and their graft compatibility with watermelon. Crop Prot. 2019, 119, 208–213. [Google Scholar] [CrossRef]
- Álvarez-Hernández, J.C.; Castellanos-Ramos, J.Z.; Aguirre-Mancilla, C.L.; Huitrón-Ramírez, M.V.; Camacho-Ferre, F. Influence of rootstocks on Fusarium wilt, nematode infestation, yield and fruit quality in watermelon production. Ciência Agrotecnologia 2015, 39, 323–330. [Google Scholar] [CrossRef] [Green Version]
- García-López, F.A.; González-Eguiarte, D.R.; Rodríguez-Macías, R.; Zarazúa-Villaseñor, P.; Huitrón-Ramírez, M.V. Watermelon production with rootstocks in soils infested with the necrotic melon spot virus. Rev. Mex. Ciencias Agrícolas 2018, 9, 577–587. [Google Scholar]
- Huitrón, M.; Rodriguez, N.; Diaz, M.; Camacho, F. Effect of different rootstocks on the production and quality of watermelon cv. reina de corazones. Acta Hortic. 2008, 797, 437–442. [Google Scholar] [CrossRef]
- Pofu, K.M.; Mashela, P.W.; Mphosi, M.S. Management of Meloidogyne incognita in nematode-susceptible watermelon cultivars using nematode-resistant Cucumis africanus and Cucumis myriocarpus rootstocks. Afr. J. Biotechnol. 2011, 10, 8790–8793. [Google Scholar] [CrossRef] [Green Version]
- Pofu, K.; Mashela, P.; de Waele, D. Survival, flowering and productivity of watermelon (Citrullus lanatus) cultivar in inter-generic grafting on nematode resistant Cucumis seedling rootstock in Meloidogyne-infested field. Int. J. Agric. Biol. 2012, 14, 217–222. [Google Scholar]
- Mashela, P.W.; Shimelis, H.A.; Mudau, F.N. Comparison of the efficacy of ground wild cucumber fruits, Aldicarb and Fenamiphos on suppression of Meloidogyne incognita in tomato. J. Phytopathol. 2008, 156, 264–267. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Ogawara, T.; Miyagi, M.; Watanabe, N.; Kuboyama, T. Response of wild Cucumis species to inoculation with Fusarium oxysporum f. sp. melonis Race 1,2y. J. Jpn. Soc. Hortic. Sci. 2011, 80, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Pofu, K.; Mashela, P.; Oelofse, D. Nematode resistance in bitter gourd to Meloidogyne incognita. Acta Agric. Scand. Sect. B Plant Soil Sci. 2014, 65, 1–5. [Google Scholar] [CrossRef]
Resistance Mechanism | Crop | Pathogen | References | |
---|---|---|---|---|
Cell wall hardening and vascular blocking | ||||
Lignin | Lignification of plant cell walls, deposition around appressoria | All cucurbits | Colletotrichum spp. | [59] |
Suberization and tylosis | Block vessels by suberin and tylose | C. sativus | FOC | [60] |
C. melo | FOM | [61] | ||
Monosporascus cannonballus | [25] | |||
Cucurbita spp. | Acremonium cucurbitacearum | [25] | ||
C. lanatus | FON | [62] | ||
Enzymes | ||||
Peroxidases | Hypersensitive response, lignification, phenolics, and glycoproteins cross-linking, suberization, and phytoalexin production | C. sativus | FORC | [63] |
Meloidogyne javanica | [64] | |||
C. melo | FOM | [65] | ||
C. lanatus | FON | [66] | ||
C. metuliferus | Meloidogyne incognita | [67] | ||
M. charantia | Meloidogyne incognita | [68] | ||
Chitinase | Cell wall chitin hydrolysis | C. sativus | Rhizoctonia solani | [69,70] |
Thielaviopsis basicola | [69] | |||
C. melo | FOM | [65,71] | ||
C. lanatus | FON | [66,72] | ||
β-1,3-glucanase | Cell wall β-1,3-glucans hydrolysis | C. sativus | Pythium aphanidermatum | [73] |
Rhizoctonia solani | [70] | |||
C. lanatus | FON | [66] | ||
Phenylalanine ammonia lyase | Phenolic compounds biosynthesis | C. sativus | Rhizoctonia solani | [70,74] |
C. melo | FOM | [71] | ||
C. lanatus | FON | [72,75] | ||
C. metuliferus | Meloidogyne incognita | [67] | ||
M. charantia | Meloidogyne incognita | [68] | ||
Polyphenol oxidase | Phenolic compounds oxidation to quinones | C. sativus | FORC | [63] |
Meloidogyne javanica | [64] | |||
M. charantia | Meloidogyne javanica | [68] | ||
Lipoxygenase | C. sativus | Rhizoctonia solani | [70] | |
Signal molecules | ||||
Salicylic acid | Systemic acquired resistance | C. sativus | Rhizoctonia solani | [70] |
C. melo | Pythium aphanidermatum | [76] | ||
Rhizoctonia solani | [77] | |||
Cucurbita spp. | Phytophthora capsici | [78] | ||
C. lanatus | FON | [66] | ||
Jasmonic acid | Induced systemic resistance | C. sativus | Rhizoctonia solani | [70] |
C. melo | FOM | [65] | ||
Monosporascus cannonballus | [79] | |||
Ethylene | Induced systemic resistance | C. sativus | Rhizoctonia solani | [70] |
Fusarium solani | [70] | |||
C. melo | FOM | [65] | ||
Antimicrobial molecules | ||||
Phytoalexins | Affect pathogen metabolism and reproduction directly | C. sativus | Pythium aphanidermatum | [80] |
Defensins | Cysteine-rich peptides with antifungal/bacterial activity | C. melo | Fusarium oxysporum | [81] |
C. lanatus | FON | [72] |
Gene Name | Description | References |
---|---|---|
Cucumis sativus | ||
Foc | Resistance to FOC races 1 and 2 in ‘Wis 248’. Controlled by a single dominant gene. | [89,90] |
qFoc6.1 | Resistance to FOC, one of two linked QTLs. | [91] |
qFoc6.2 | Resistance to FOC, one of two linked QTLs. | [91] |
Cucumis melo | ||
Fom-1 | Resistance to FOM race 0 and 2. | [92] |
Fom-2 | Resistance to FOM race 0 and 1. | [92] |
Fom-3 | Same phenotype as Fom-1 but segregates independently. | [93] |
fom1.2a | Resistance to FOM race 1.2. | [94] |
fom-4 | Resistance to FOM race 0 and 2. Likely associated with Fom-1. | [95] |
Mvd | Melon vine decline resistance in ‘Pat 81’. Semi-dominant gene for partial resistance to Acremonium cucurbitacearum and Monosporascus cannonballus. | [26] |
Forc-1 | Dominant gene that confers resistance with forc-2 to FORC in ‘Hemed’. | [96] |
forc-2 | Recessive gene that confers resistance with Forc-1 to FORC in ‘Hemed’. | [96] |
Citrullus lanatus | ||
Fo-1 | Dominant gene for resistance to FON race 1. | [97] |
Cucurbita spp. | ||
Crr-1 Crr-2 Crr-3 | Three complementary dominant genes from C. lundelliana and C. okeechobeensis subsp. okeechobeensis for resistance to Phytophthora capsici. | [88] |
Other cucurbits | ||
F1,2y | Dominant gene that confers resistance to FOM race 1,2y in C. anguria. | [98] |
Crop | Root-Knot Nematode | Observation | References |
---|---|---|---|
C. amarus | M. incognita | Root fibrosity | [104] |
C. lanatus var. lanatus | M. javanica | Reduced root invasion rates | [35,44] |
Delayed development | |||
Life cycle disruption at the J3 stage | |||
Reduced J2 emergence from eggs | |||
No effect on female fecundity | |||
C. africanus | M. incognita | Delayed development | [33] |
Life cycle disruption at the J2 stage | |||
Maleness | |||
C. hystrix | M. incognita | Increased lateral roots | [103] |
C. melo var. texanus | M. incognita | Reduced root invasion rates | [106] |
Delayed development | |||
J2 emigration | |||
Empty galls | |||
No effect on female fecundity | |||
C. metuliferus | M. incognita | Reduced root invasion rates | [67,105] |
Delayed development | |||
J2 emigration from the root | |||
Reduced female fecundity | |||
Hypersensitive reaction | |||
C. myriocarpus | M. incognita | Failure J2 to establish a feeding site | [33] |
Life cycle disruption at the J2 stage | |||
Maleness | |||
C. sativus | M. hapla | Empty galls | [107,108] |
Maleness | |||
C. foetidissima | M. incognita | Reduced root invasion rates | [109] |
Delayed development | |||
Reduced female fecundity | |||
C. pepo subsp. pepo | M. incognita | Malfunction of feeding sites | [101] |
Life cycle disruption at the J4 stage | |||
Empty galls | |||
Reduced female fecundity |
Rootstock | Scion | Root-Knot Nematode | Reproduction | Root Galling | Yield | References |
---|---|---|---|---|---|---|
C. maxima × C. moschata ‘Strong Tosa’ | C. sativus ‘Adrian’ | Meloidogyne sp. | NS | NS | Increased | [162] |
C. melo ‘Athena’ | M. incognita | Increased | NS | Reduced | [163] | |
C. lanatus ‘Fiesta’ | M. incognita | Increased | Increased | Reduced | [4] | |
C. lanatus ‘TriX313’ | M. incognita | Increased | Increased | NS | [164] | |
C. maxima × C. moschata ‘RS841’ | C. sativus ‘Adrian’ | Meloidogyne sp. | NS | NS | Increased | [162] |
C. sativus ‘Dasher II’ | M. incognita | Increased | NS | NS | [165] | |
C. lanatus ‘Sugar Baby’ | M. javanica | Increased | Increased | Reduced | [42] | |
C. maxima × C. moschata ‘Ercole No. 6001’ | C. sativus ‘Hesham’ | M. incognita | Reduced | Reduced | Increased | [115] |
C. sativus ‘Sinai’ | M. incognita | Reduced | Reduced | Increased | [115] | |
L. siceraria ‘Emphasis’ | C. sativus ‘Adrian’ | Meloidogyne sp. | NS | NS | NS | [162] |
C. lanatus ‘Fiesta’ | M. incognita | NS | Increased | NS | [4] | |
C. lanatus ‘Tri-X 313’ | M. incognita | Increased | Increased | NS | [164] | |
C. lanatus ‘Palomar’ | M. incognita | Increased | NS | Reduced | [163] | |
L. siceraria | C. sativus ‘Hesham’ | M. incognita | Reduced | Reduced | Increased | [115] |
C. sativus ‘Sinai’ | M. incognita | Reduced | Reduced | Increased | [115] | |
C.metuliferus | C. melo ‘Durango’ | M. incognita | Reduced | Reduced | Increased | [166] |
C. melo ‘Arava’ | M. incognita | Reduced | Reduced | NS | [167] | |
C. melo ‘Honey Yellow’ | M. incognita | Reduced | Reduced | NS | [167] | |
C. melo | M. incognita | Reduced | Reduced | Increased | [105] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala-Doñas, A.; Cara-García, M.d.; Talavera-Rubia, M.; Verdejo-Lucas, S. Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting. Agronomy 2020, 10, 1641. https://doi.org/10.3390/agronomy10111641
Ayala-Doñas A, Cara-García Md, Talavera-Rubia M, Verdejo-Lucas S. Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting. Agronomy. 2020; 10(11):1641. https://doi.org/10.3390/agronomy10111641
Chicago/Turabian StyleAyala-Doñas, Alejandro, Miguel de Cara-García, Miguel Talavera-Rubia, and Soledad Verdejo-Lucas. 2020. "Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting" Agronomy 10, no. 11: 1641. https://doi.org/10.3390/agronomy10111641
APA StyleAyala-Doñas, A., Cara-García, M. d., Talavera-Rubia, M., & Verdejo-Lucas, S. (2020). Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting. Agronomy, 10(11), 1641. https://doi.org/10.3390/agronomy10111641