The Level of Luvisols Biochemical Activity in Midfield Shelterbelt and Winter Triticale (xTriticosecale Wittm. ex A. Camus) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Weather Conditions
2.3. Soil Sampling for Physicochemical Analyses
2.4. Soil Sampling to Determine the Water Retention Curve
2.5. Soil Enzymatic Activity
2.6. Statistics
3. Results
3.1. Physical and Chemical Properties of Soils
3.2. Soil Enzymatic Activity
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wójcik, J.; Krzaklewski, W. Afforestation as a method of reclamation of soilless land in brown coal mining in Poland. Ecol. Eng. 2019, 20, 24–37. [Google Scholar] [CrossRef]
- Pranagal, J. Differential porosity of rendzina and water stability of its aggregates in various cultivation systems. Soil Sci. Annu. 2004, 55, 339–347. [Google Scholar]
- Życzynska-Bałoniak, I.; Szajdak, L.; Jaskulska, R. Impact of biogeochemical barriers on the migration of chemical compounds with the water of agricultural landscape. Pol. J. Environ. Stud. 2005, 14, 671–676. [Google Scholar]
- Hagen-Thorn, A.; Callesen, I.; Armolaitis, K.; Nihlgard, B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 2004, 195, 373–384. [Google Scholar] [CrossRef]
- Kędziora, A.; Olejnik, J. Water balance in agricultural landscape and options for its management by change in plant cover structure of landscape. Landsc. Ecol. Agroecosyst. Manag. 2002, 57–110. [Google Scholar] [CrossRef]
- Kaczmarek, Z.; Owczarzak, W.; Mocek, A. Physical and water properties of arable Luvisols situated under infield tree planting within the Dezydery Chlapowski Agro-Ecological Landscape Park. J. Res. Appl. Agric. Eng. 2006, 51, 35–39. [Google Scholar]
- Bielińska, E.; Mocek-Płóciniak, A. Impact of the tillage system on the soil enzymatic activity. Arch Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Pałosz, T. Agricultural and environmental significance of soil humus and methods of its balance. Annu. Set Environ. Prot. 2009, 11, 329–338. [Google Scholar]
- Maryganova, V.V.; Bambalov, N.N.; Szajdak, L.W. Changes of fraction–group composition of humic substances and the indole-3-acetic acid content depending on the depth of peat deposit. Prirodopolzovanie 2011, 19, 180–186. [Google Scholar]
- Szajdak, L.W.; Jaskulska, R. Biochemical and chemical characterization of soils under shelterbelts and adjoining cultivated fields. In Shelterbelts: Efficient Element of the Landsacape. Chemical and Biochemical Investigations of Ground Water and Soil; Szajdak, L.W., Ed.; Lambert Academic Publishing: Saarbrücken, Germany, 2011; pp. 21–32. [Google Scholar]
- Pikuła, D. Environmental aspects of managing the organic matter in agriculture. Econ. Reg. Stud. 2015, 8, 98–112. [Google Scholar]
- Jaskulska, R.; Jaskulska, J. Efficiency of old and young shelterbelts in reducing the contents of nutrients in Luvisols. Agric. Ecosyst. Environ. 2017, 240, 269–275. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Pranagal, J. Enzymatic activity as an indicator of degradation of agriculturally used silty soils. Soil Sci. Annu. 2006, 57, 41–49. [Google Scholar]
- Jaskulska, R. Sorptive properties of cultivated Luvisols. J. Res. Appl. Agric. Eng. 2017, 63, 97–100. [Google Scholar]
- Dubis, B.; Bogucka, B.; Smaciarz, W. The effect of production system intensity on the yield of winter triticale (x Triticosecale Wittm. ex A. Camus) cultivar Alekto. Acta Sci. Pol. Agric. 2017, 16, 199–206. [Google Scholar]
- Jaśkiewicz, B. Influence of fertilization intensity and sowing density on yield of winter triticale variety Woltario. Acta Sci. Pol. Agric. 2008, 7, 41–50. [Google Scholar]
- Pattison, A.L.; Trethowan, R.M. Characteristics of modern triticale quality: Commercially significant flour traits and cookie quality. Crop Pasture Sci. 2013, 64, 74–880. [Google Scholar] [CrossRef]
- Prusiński, J.; Borowska, M.; Kaszkowiak, E.; Olszak, G. The after-effect of chosen Fabaceae forecrops on the yield of grain and protein in winter triticale (Triticosecale sp. Wittmack ex A. Camus 1927) fertilized with mineral nitrogen. Plant Soil Environ. 2016, 62, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Riffaldi, T. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 2001, 233, 251–259. [Google Scholar] [CrossRef]
- Siebielec, G.; Siebielec, S.; Podolska, G. Comparison of microbial and chemical characteristics of soil types after over 100 years of cereal production. Pol. J. Agron. 2015, 23, 88–100. [Google Scholar]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Organic matter components, aggregate stability and biological activity in a horticultural soil fertilized with different rates of two sewage sludges during ten years. Biores. Technol. 2001, 77, 109–114. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, F.; Wang, G.; Zhang, W.; Yu, W. Soil Microbiological Properties and Enzyme Activities in Ginkgo-Tea Agroforestry Compared to Monoculture. Forest Res. 2013, 87, 1201–1210. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Tabatabai, M.A. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 2000, 31, 85–91. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil function. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kandeler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Enzymes in the Environment. Activity, Ecology and Applications; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 1–33. [Google Scholar]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 2012, 10, 183–210. [Google Scholar]
- Brzezińska, M.; Włodarczyk, T. Enzymes of intracellular redox transformations (oxireductases). Acta Agrophys. 2005, 3, 11–26. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. Soil Biol. 2011, 26, 215–243. [Google Scholar]
- Bucher, M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 2007, 173, 11–26. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 188. [Google Scholar]
- Marcinek, J. Soils of the Turew Agricultural landscape. In Dynamics of Agricultural Landscape; Ryszkowski, L., French, N.R., Kędziora, A., Eds.; PWRiL: Poznań, Poland, 1996; pp. 19–27. [Google Scholar]
- Ryszkowski, L.; Bartoszewicz, A.; Kędziora, A. Management of matter fluxes by biogeochemical barriers at the agricultural landscape level. Landsc. Ecol. 1999, 14, 479–492. [Google Scholar] [CrossRef]
- Woś, A. Polish Climate in the Second Half of the 20th Century; Scientific Publisher UAM: Poznań, Poland, 2010; p. 489. [Google Scholar]
- Mocek, A.; Drzymala, S.; Maszner, P. Genesis, Analysis and Classification of Soils; Publisher Agricultural Academy: Poznan, Poland, 2006; p. 416. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- PN-ISO 11277. Soil Quality. Determination of Particle Size Distribution in Mineral Soil Material: Method by Sieving and Sedimentation; ISO: Geneva, Switzerlan, 2005. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar]
- Thalmann, A. Zur Methodik der Bestimmung der Dehydrogenase aktivität im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch. 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Pietri, J.A.; Brookes, P. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Piotrowska, A.; Długosz, J.; Zamorski, R.; Bogdanowicz, P. Changes in some biological and chemical properties of an arable soil treated with the microbial biofertilizer UGmax. Pol. J. Environ. Stud. 2012, 21, 455–463. [Google Scholar]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon stock and fractional distribution in upland grasslands. Geoderma 2018, 314, 175–183. [Google Scholar] [CrossRef]
- Józefaciuk, G. Effect of acid and alkali treatments on surface-charge properties of selected minerals. Clays Clay Miner. 2002, 50, 647–656. [Google Scholar] [CrossRef]
- Kobierski, M.; Długosz, J.; Bartkowiak, A. Sorption complex of selected soils of the Drawskie Lakeland. J. Elem. 2011, 16, 397–405. [Google Scholar] [CrossRef]
- Joimel, S.; Cortet, J.; Jolivet, C.; Saby, N.; Chenot, E.-D.; Branchu, P.; Consalès, J.-N.; Lefort, C.; Morel, J.-L.; Schwartz, C. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 2016, 545, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Futa, B.; Bik-Mołodzińska, M.; Szewczuk, C.; Sugier, D. The impact of fertilizing agents on the enzymatic activity of soils. J. Res. Appl. Agric. Eng. 2013, 58, 15–19. [Google Scholar]
- Domżał, H.; Słowińska-Jurkiewicz, A. The effect of different tillage systems for winter wheat cultivation on morphological structure of soil arable layer. Fragm. Agron. 1995, 4, 18–33. [Google Scholar]
- Gnatowski, T.; Szatyłowicz, J.; Brandyk, T.; Kechavarzi, C. Hydraulic properties of fen peat soils in Poland. Geoderma 2010, 154, 188–195. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, M.A.; Sannino, F.; Saccomandi, F.; Violante, A. Enzymes in soil: Properties, behavior and potential applications. Dev. Soil Sci. 2002, 28, 301–327. [Google Scholar]
- Bielińska, E.J.; Futa, B.; Mocek, A. The impact of agrotechnical operations on the functioning of agricultural landscape. Agric. Eng. 2008, 10, 7–15. [Google Scholar]
- Zhang, N.; He, X.; Gao, Y.; Li, Y.; Wang, H.; Ma, D.; Zhang, R.; Yang, S. Pedogenic Carbonate and Soil Dehydrogenase Activity in Response to Soil Organic Matter in Artemisia ordosica Community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Bielińska, E.J. Enzymatic activity as an indicator of soil transformations under the influence of orchard use. Pol. J. Soil Sci. 2001, 34, 89–97. [Google Scholar]
- Brzezińska, M.; Stępniewski, W.; Stępniewska, Z.; Przywara, G.; Włodarczyk, T. Effect of oxygen deficiency on soil dehydrogenase activity in a pot experiment with triticale cv. Jago vegetation. Int. Agrophys. 2001, 15, 145–149. [Google Scholar]
- Wolińska, A.; Rekosz-Burlaga, H.; Goryluk-Salmonowicz, A.; Błaszczyk, M.; Stępniewska, Z. Bacterial abundance and dehydrogenase activity in selected agricultural soils from Lublin region. Pol. J. Environ. Stud. 2015, 6, 2677–2682. [Google Scholar] [CrossRef]
- Jaskulska, R. Microbiological Characteristics of Luvisols of a Midfield Shelterbelt and Cultivated Field. Adv. Biotechnol. Microbiol. 2019, 13, 1–2. [Google Scholar]
- Frankenberger, W.T., Jr.; Johanson, J.B. Effect of pH on enzyme stability in soils. Soil Biol. Biochem. 1982, 14, 433–437. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Siwik-Ziomek, A.; Koper, J. Effect of spring barley nitrogen fertilization on the changes in the content of phosphorus and the activity of alkaline and acid phosphatase in soil. Ecol. Chem. Eng. A 2012, 19, 1497–1507. [Google Scholar]
- Ciereszko, I.; Szczygła, A.; Żebrowska, E. Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. J. Plant Nutr. 2011, 34, 815–829. [Google Scholar] [CrossRef]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol. Fert. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Bielińska, E.; Mocek-Płóciniak, A. Phosphatases in the Soil Environment; University of Life Sciences Pub: Poznań, Poland, 2009; ISBN 978-83-7160-554-3. [Google Scholar]
- Mocek-Płóciniak, A. Impact of heavy metals on microorganisms and the soil enzymatic activity. Soil Sci. Annu. 2011, 62, 211–220. [Google Scholar]
Variable | Clay | Silt | Sand | Texture | pHKCl | CEC |
---|---|---|---|---|---|---|
% | Cmol kg−1 | |||||
Shelterbelt (S) | 2 | 24 | 74 | loamy sand | 3.51 | 6.97 |
Border (B) | 5 | 22 | 73 | sandy loam | 4.50 | 9.29 |
Field (F50) | 3 | 17 | 79 | loamy sand | 6.24 | 7.60 |
Field (F100) | 2 | 20 | 77 | loamy sand | 6.15 | 7.22 |
Variable | Soil Moisture (cm3 cm−3) at Suction Pressure (pF) | |||||||
---|---|---|---|---|---|---|---|---|
0.4 | 1.0 | 1.7 | 2.0 | 2.7 | 3.0 | 3.4 | 4.2 | |
S | 0.5500 | 0.5400 | 0.5130 | 0.4430 | 0.3670 | 0.2967 | 0.2324 | 0.1679 |
B | 0.5689 | 0.5103 | 0.4779 | 0.4072 | 0.3577 | 0.2992 | 0.1905 | 0.1117 |
F50 | 0.4674 | 0.4262 | 0.4053 | 0.3455 | 0.2218 | 0.1740 | 0.0943 | 0.0681 |
F100 | 0.4027 | 0.3901 | 0.3621 | 0.3254 | 0.2371 | 0.1697 | 0.1140 | 0.0819 |
Variable | pHKCl | Moisture | CEC | SOC | Ntotal |
---|---|---|---|---|---|
DHA | 0.61 ** | −0.56 ** | n.s. | −0.57 ** | −0.48 * |
PAC | n.s. | −0.58 ** | n.s. | n.s. | n.s. |
PAL | 0.53 ** | n.s. | n.s. | −0.47 * | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskulska, R. The Level of Luvisols Biochemical Activity in Midfield Shelterbelt and Winter Triticale (xTriticosecale Wittm. ex A. Camus) Cultivation. Agronomy 2020, 10, 1644. https://doi.org/10.3390/agronomy10111644
Jaskulska R. The Level of Luvisols Biochemical Activity in Midfield Shelterbelt and Winter Triticale (xTriticosecale Wittm. ex A. Camus) Cultivation. Agronomy. 2020; 10(11):1644. https://doi.org/10.3390/agronomy10111644
Chicago/Turabian StyleJaskulska, Renata. 2020. "The Level of Luvisols Biochemical Activity in Midfield Shelterbelt and Winter Triticale (xTriticosecale Wittm. ex A. Camus) Cultivation" Agronomy 10, no. 11: 1644. https://doi.org/10.3390/agronomy10111644
APA StyleJaskulska, R. (2020). The Level of Luvisols Biochemical Activity in Midfield Shelterbelt and Winter Triticale (xTriticosecale Wittm. ex A. Camus) Cultivation. Agronomy, 10(11), 1644. https://doi.org/10.3390/agronomy10111644