Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology
Abstract
:Featured Application
Abstract
1. Introduction
- Loss of biodiversity among plants and animals caused by monocultures;
- Soil and groundwater pollution due to the use of chemical pesticides and fertilizers;
- Soil eroding at a much faster pace than it can be replenished;
- Fish die-offs;
- Use of water and fossil fuels at unsustainable rates.
2. Categorization Approach
2.1. Existing Data Lifecycle Models
- Plan: This element refers to evaluation, addressing, and documentation of all the other elements of the model.
- Acquire: The second element involves collection, generation, and evaluation for re-use of data.
- Process: This element encompasses activities for preparing datasets (e.g., through extraction, transformation, and load operations) for their subsequent analysis and/or integration.
- Analyze: The fourth element revolves around exploring, interpreting, and transforming to extract knowledge and/or new data.
- Preserve: This element represents actions for storing data and ensuring that they can be accessed and used in the future.
- Publish/Share: The sixth element involves activities for distribution and sharing of information.
- Describe: This element stresses the importance of metadata based on standards as well as sufficient documentation for all lifecycle stages. This leads to fewer errors and facilitates current and future use of data.
- Manage Quality: The second cross-cutting element refers to quality assurance (QA) and quality control (QC) measures for all lifecycle stages.
- Backup and Secure: The third cross-cutting element underlines the importance of preventing physical data losses and promotes secure data management methods.
2.2. Proposed Data Lifecycle Model
- Data Collection and Internet-of-Things (IoT): The first element is responsible for directly or indirectly collecting existing data and/or generating new data. Furthermore, it encompasses managing the sources (e.g., data from sensors, databases, historical data) for the data collection. This element also underscores the vital importance of IoT technologies in data collection and in PA as a whole. The term IoT refers to interrelated computers and everyday objects, which can transmit and receive data over a network and often incorporate ubiquitous intelligence [16].
- Data Analysis and Artificial Intelligence (AI): The second element involves processing of data from various sources as well as extracting valuable knowledge and generating added value from data. It also refers to transforming raw data to a more sophisticated form in order to facilitate subsequent analysis and/or integration. AI has a central role in this element and covers a range of different techniques (e.g., computer vision, fuzzy logic, evolutionary algorithms, machine learning, semantic processing).
- Data Storage and Distribution: The third element refers to the necessary processes and resources for permanently or temporarily storing sets of data as well as for providing end-users with open or restricted access to data.
2.3. Categorization Method
3. Information and Communication Technology Solutions for Precision Agriculture
3.1. Data Collection and IoT
3.1.1. Satellite Communications
3.1.2. Internet of Things and Wireless Sensor Networks
3.2. Data Analysis and Artificial Intelligence
3.2.1. Data Analysis for the Determination of Management Zones
3.2.2. Predictive Models and Decision Support
3.2.3. Computer Vision
3.2.4. Visualization Techniques
3.2.5. Other Data Analysis Tools
3.3. Data Storage and Distribution
3.3.1. Sharing Platforms and Cloud Storage
3.3.2. Blockchain and Smart Contracts
3.4. Multi-Purpose Platforms
3.4.1. Management Information Systems and Digital Platforms
3.4.2. Cyber-Physical Systems
3.4.3. Smartphone Applications
4. Discussion on the Results—Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudduth, K.A.; Hummel, J.W.; Birrell, S.J. Sensors for Site-Specific Management. In The State of Site Specific Management for Agriculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 183–210. ISBN 978-0-89118-262-7. [Google Scholar]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Precision Agriculture. Available online: https://www.springer.com/journal/11119/updates/17240272 (accessed on 20 August 2020).
- Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 67, pp. 1–85. [Google Scholar]
- Gemtos, T.A.; Fountas, S.; Aggelopoulou, K. Precision Agriculture Applications in Horticultural Crops in Greece and Worldwide. In Proceedings of the International Conference on Information and Communication Technologies for Sustainable Agri-production and Enviroment (HAICTA 2011), Skiathos, Greece, 8–11 September 2011; pp. 451–462. [Google Scholar]
- Digital Agriculture: Feeding the Future. Available online: http://breakthrough.unglobalcompact.org/disruptive-technologies/digital-agriculture/ (accessed on 5 October 2020).
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2018, 100, 5083–5092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaper, L.K.; Pervan, G.P. ICT and OTs: A model of information and communication technology acceptance and utilisation by occupational therapists. Int. J. Med. Inform. 2007, 76, S212–S221. [Google Scholar] [CrossRef] [PubMed]
- Information and Communication Technologies (ICT). Available online: http://uis.unesco.org/en/glossary-term/information-and-communication-technologies-ict (accessed on 24 August 2020).
- Sinaeepourfard, A.; Masip-Bruin, X.; Garcia, J.; Marín-Tordera, E. A Survey on Data Lifecycle Models: Discussions toward the 6Vs Challenges; Technical report (UPC-DACRR-2015-18); Universitat Politècnica de Catalunya (UPC, BarcelonaTech): Barcelona, Spain, 2015; pp. 4–16. [Google Scholar]
- Faundeen, J.L.; Burley, T.E.; Carlino, J.; Govoni, D.L.; Henkel, H.S.; Holl, S.; Tessler, S. The United States Geological Survey Science Data Lifecycle Model; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Higgins, S. The DCC Curation Lifecycle Model. Int. J. Digit. Curation 2008, 3, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Emaldi, M.; Peña, O.; Lázaro, J.; López-de-Ipiña, D. Linked Open Data as the Fuel for Smarter Cities. In Modeling and Processing for Next-Generation Big-Data Technologies: With Applications and Case Studies; Xhafa, F., Barolli, L., Barolli, A., Papajorgji, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 443–472. ISBN 978-3-319-09177-8. [Google Scholar]
- Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of Things. Int. J. Commun. Syst. 2012, 25, 1101–1102. [Google Scholar] [CrossRef]
- Chang, K. Introduction to Geographic Information Systems; McGraw-Hill Higher Education: Boston, MA, USA, 2006; pp. 117–122. [Google Scholar]
- Stombaugh, T. Satellite-based Positioning Systems for Precision Agriculture. In Precision Agriculture Basics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 25–35. ISBN 978-0-89118-367-9. [Google Scholar]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.P.C.; Gupta, D.; De Albuquerque, V.H.C. Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput. Appl. 2018, 31, 277–292. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Pascual, J.M.M.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef] [Green Version]
- Foughali, K.; Fathallah, K.; Frihida, A. Using Cloud IOT for disease prevention in precision agriculture. Procedia Comput. Sci. 2018, 130, 575–582. [Google Scholar] [CrossRef]
- Palazzi, V.; Gelati, F.; Vaglioni, U.; Alimenti, F.; Mezzanotte, P.; Roselli, L. Leaf-Compatible Autonomous RFID-Based Wireless Temperature Sensors for Precision Agriculture. In Proceedings of the 2019 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar]
- Miao, Y.; Mulla, D.J.; Robert, P.C. An integrated approach to site-specific management zone delineation. Front. Agric. Sci. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Buttafuoco, G.; Lucà, F. The Contribution of Geostatistics to Precision Agriculture. Ann. Agric. Crop Sci. 2016, 1, 1008. [Google Scholar]
- Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [Google Scholar] [CrossRef]
- Kingsley, J.; Lawani, S.O.; Esther, A.O.; Ndiye, K.M.; Sunday, O.J.; Penížek, V. Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models. Mod. Appl. Sci. 2019, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Haddad, O.B.; Tabari, M.M.R.; Fallah-Mehdipour, E.; Mariño, M.A. Groundwater Model Calibration by Meta-Heuristic Algorithms. Water Resour. Manag. 2013, 27, 2515–2529. [Google Scholar] [CrossRef]
- Dedić, N.; Stanier, C. Towards Differentiating Business Intelligence, Big Data, Data Analytics and Knowledge Discovery. In Proceedings of the Innovations in Enterprise Information Systems Management and Engineering; Piazolo, F., Geist, V., Brehm, L., Schmidt, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 114–122. [Google Scholar]
- Marsland, S. Machine Learning: An Algorithmic Perspective, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 4–10. [Google Scholar]
- Bendre, M.R.; Thool, R.C.; Thool, V.R. Big Data in Precision Agriculture through ICT: Rainfall Prediction Using Neural Network Approach. In Proceedings of the International Congress on Information and Communication Technology; Satapathy, S.C., Bhatt, Y.C., Joshi, A., Mishra, D.K., Eds.; Springer: Singapore, 2016; pp. 165–175. [Google Scholar]
- Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA, 5–7 May 2008; pp. 363–369. [Google Scholar]
- Ruan, J.; Jiang, H.; Li, X.; Shi, Y.; Chan, F.T.S.; Rao, W. A Granular GA-SVM Predictor for Big Data in Agricultural Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2019, 15, 6510–6521. [Google Scholar] [CrossRef]
- Newlands, N.K.; Zamar, D.S.; Kouadio, L.A.; Zhang, Y.; Chipanshi, A.; Potgieter, A.; Toure, S.; Hill, H.S.J. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty. Front. Environ. Sci. 2014, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Bendre, M.; Manthalkar, R. Time series decomposition and predictive analytics using MapReduce framework. Expert Syst. Appl. 2019, 116, 108–120. [Google Scholar] [CrossRef]
- Peerlinck, A.; Sheppard, J.; Maxwell, B. Using Deep Learning in Yield and Protein Prediction of Winter Wheat Based on Fertilization Prescriptions in Precision Agriculture. In Proceedings of the 14thInternational Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 January 2018. [Google Scholar]
- Sum, R.M.; Saad, Z.M. Risk Management Decision Making. In online Proceedings of the International Symposium of Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–26 June 2013. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Liu, F.; Zhao, L.; Xue, Q.; Wang, H.; Chen, M.; Lei, P.; Wen, D.; Sanchez-Molina, J.A.; et al. A risk management system for meteorological disasters of solar greenhouse vegetables. Precis. Agric. 2017, 18, 997–1010. [Google Scholar] [CrossRef]
- Řezník, T.; Lukas, V.; Charvát, K.; Křivánek, Z.; Kepka, M.; Herman, L.; Řezníková, H. Disaster Risk Reduction in Agriculture through Geospatial (Big) Data Processing. ISPRS Int. J. Geo-Inf. 2017, 6, 238. [Google Scholar] [CrossRef]
- Shirai, Y. Three-Dimensional Computer Vision; Springer Science & Business Media: Berlin, Germany, 2012; pp. 1–10. [Google Scholar]
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.N.; Na, I.S.; Lee, K.H. Automatic Counting of Rice Plant Numbers After Transplanting Using Low Altitude UAV Images. Int. J. Contents 2017, 13, 1–8. [Google Scholar] [CrossRef]
- Arkeman, Y.; Buono, A.; Hermadi, I. Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012102. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Shafian, S.; Maas, S. Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains. Remote Sens. 2015, 7, 2352–2372. [Google Scholar] [CrossRef] [Green Version]
- Alves, G.M.; Cruvinel, P.E. Big Data Environment for Agricultural Soil Analysis from CT Digital Images. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 429–431. [Google Scholar]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. arXiv 2018, arXiv:1805.12395. [Google Scholar] [CrossRef] [Green Version]
- Bleiholder, J.; Naumann, F. Data fusion. ACM Comput. Surv. 2009, 41, 1–41. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Barge, P.; Tortia, C.; Gay, P. 2D and 3D data fusion for crop monitoring in precision agriculture. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 62–67. [Google Scholar]
- Xu, H.; Xu, D.; Chen, S.; Ma, W.; Shi, Z. Rapid Determination of Soil Class Based on Visible-Near Infrared, Mid-Infrared Spectroscopy and Data Fusion. Remote Sens. 2020, 12, 1512. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, S.; Ostermann, J. A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks. In Proceedings of the Computer Vision—ECCV 2014 Workshops; Agapito, L., Bronstein, M.M., Rother, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 105–116. [Google Scholar]
- Hirve, S.A.; Kunjir, A.; Shaikh, B.; Shah, K. An approach towards data visualization based on AR principles. In Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), Chirala, India, 23–25 March 2017; pp. 128–133. [Google Scholar]
- Tan, L.; Haley, R.; Wortman, R.; Zhang, Q. An extensible and integrated software architecture for data analysis and visualization in precision agriculture. In Proceedings of the 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI), Las Vegas, NV, USA, 8–10 August 2012; pp. 271–278. [Google Scholar]
- Okayama, T.; Miyawaki, K. The “Smart Garden” System using Augmented Reality. IFAC Proc. Vol. 2013, 46, 307–310. [Google Scholar] [CrossRef]
- Lin, T.-T.; Hsiung, Y.-K.; Hong, G.-L.; Chang, H.-K.; Lu, F.-M. Development of a virtual reality GIS using stereo vision. Comput. Electron. Agric. 2008, 63, 38–48. [Google Scholar] [CrossRef]
- Carruth, D.W.; Hudson, C.; Fox, A.A.A.; Deb, S. User Interface for an Immersive Virtual Reality Greenhouse for Training Precision Agriculture. In Proceedings of the Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications; Chen, J.Y.C., Fragomeni, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 35–46. [Google Scholar]
- Phupattanasilp, P.; Tong, S.-R. Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability 2019, 11, 2658. [Google Scholar] [CrossRef] [Green Version]
- Novák, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Springer Science and Business Media LLC: Berlin, Germany, 1999; Volume 517, pp. 1–14. [Google Scholar]
- Maarala, A.I.; Su, X.; Riekki, J. Semantic Reasoning for Context-Aware Internet of Things Applications. IEEE Internet Things J. 2016, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.X.; Ali, M.I. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 442–447. [Google Scholar]
- Ravankar, A.; Ravankar, A.A.; Watanabe, M.; Hoshino, Y.; Rawankar, A. Development of a Low-Cost Semantic Monitoring System for Vineyards Using Autonomous Robots. Agriculture 2020, 10, 182. [Google Scholar] [CrossRef]
- Jin, X.; Chen, K.; Zhao, Y.; Ji, J.; Jing, P. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller. Measurement 2020, 164, 108023. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Luo, C.; Hu, H.; Huang, J. MOEA/D-DE based bivariate control sequence optimization of a variable-rate fertilizer applicator. Comput. Electron. Agric. 2019, 167, 105063. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goïta, K.; Trudel, M.; McNairn, H.; Powers, J. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm. Remote Sens. Environ. 2019, 231, 111234. [Google Scholar] [CrossRef]
- Padhee, S.K.; Dutta, S. Spatio-Temporal Reconstruction of MODIS NDVI by Regional Land Surface Phenology and Harmonic Analysis of Time-Series. GISci. Remote Sens. 2019, 56, 1261–1288. [Google Scholar] [CrossRef]
- Dong, J.; Burnham, J.G.; Boots, B.; Rains, G.; Dellaert, F. 4D crop monitoring: Spatio-temporal reconstruction for agriculture. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3878–3885. [Google Scholar]
- Chen, D.; Wu, B.; Chen, T.; Dong, J. Development of distributed data sharing platform for multi-source IOT sensor data of agriculture and forestry. Trans. Chin. Soc. Agric. Eng. 2017, 33, 300–307. [Google Scholar]
- Uchinuno, T.; Yasunaga, Y.; Keiichi, M.; Sugimoto, N.; Aoqui, S.-I. Development of Knowledge Sharing System for Agriculture Application. In Proceedings of the 2013 Second IIAI International Conference on Advanced Applied Informatics, Los Alamitos, CA, USA, 31 August–4 September 2013; pp. 108–111. [Google Scholar]
- Wu, Q.; Sun, Y.; Yang, X.; Liang, Y.; Geng, X. Study on XML-Based Heterogeneous Agriculture Database Sharing Platform. In Proceedings of the Computer and Computing Technologies in Agriculture IV; Li, D., Liu, Y., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–7. [Google Scholar]
- Rhee, J.-Y.; Lee, C.G.; Baek, S.H.; Kim, J.-Y. Open farm information system data-exchange platform for interaction with agricultural information systems. Agric. Eng. Int. CIGR J. 2015, 17, 296–309. [Google Scholar]
- Mell, P.; Grance, T. The NIST Definition of Cloud Computing (Draft); NIST Special Publication: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Zhou, L.; Chen, N.; Chen, Z.; Xing, C. ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5588–5598. [Google Scholar] [CrossRef]
- Pavón-Pulido, N.; López-Riquelme, J.A.; Torres, R.; Morais, R.; Pastor, J.A. New trends in precision agriculture: A novel cloud-based system for enabling data storage and agricultural task planning and automation. Precis. Agric. 2017, 18, 1038–1068. [Google Scholar] [CrossRef]
- Raikwar, M.; Gligoroski, D.; Kralevska, K. SoK of Used Cryptography in Blockchain. IEEE Access 2019, 7, 148550–148575. [Google Scholar] [CrossRef]
- Demestichas, K.; Peppes, N.; Alexakis, T.; Adamopoulou, E. Blockchain in Agriculture Traceability Systems: A Review. Appl. Sci. 2020, 10, 4113. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Bhattacharya, P.; Kumar, N. Blockchain for precision irrigation: Opportunities and challenges. Trans. Emerg. Telecommun. Technol. 2020, 4059. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Petway, J.R.; Anthony, J.; Mukhtar, H.; Liao, S.-W.; Chou, C.-F.; Ho, Y.-F. Blockchain: The Evolutionary Next Step for ICT E-Agriculture. Environments 2017, 4, 50. [Google Scholar] [CrossRef]
- Chun-Ting, P.; Meng-Ju, L.; Nen-Fu, H.; Jhong-Ting, L.; Jia-Jung, S. Agriculture Blockchain Service Platform for Farm-to-Fork Traceability with IoT Sensors. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 158–163. [Google Scholar]
- Smirnov, A.; Sheremetov, L.; Teslya, N. Usage of Smart Contracts with FCG for Dynamic Robot Coalition Formation in Precision Farming. In Proceedings of the Enterprise Information Systems; Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 115–133. [Google Scholar]
- Burlacu, G.; Costa, R.; Sarraipa, J.; Jardim-Golcalves, R.; Popescu, D. A Conceptual Model of Farm Management Information System for Decision Support. In Proceedings of the Technological Innovation for Collective Awareness Systems; Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 47–54. [Google Scholar]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. A Farm Management Information System Using Future Internet Technologies. IFAC Pap. Line 2016, 49, 324–329. [Google Scholar] [CrossRef]
- Morais, R.; Silva, N.; Mendes, J.; Adão, T.; Pádua, L.; López-Riquelme, J.A.; Pavón-Pulido, N.; Sousa, J.J.; Peres, E. mySense: A comprehensive data management environment to improve precision agriculture practices. Comput. Electron. Agric. 2019, 162, 882–894. [Google Scholar] [CrossRef]
- González-González, M.G.; Gómez-Sanchis, J.; Blasco, J.; Soria-Olivas, E.; Chueca, P. CitrusYield: A Dashboard for Mapping Yield and Fruit Quality of Citrus in Precision Agriculture. Agronomy 2020, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Ngo, Q.H.; Le-Khac, N.-A.; Kechadi, T. Ontology Based Approach for Precision Agriculture. In Proceedings of the Multi-disciplinary Trends in Artificial Intelligence; Kaenampornpan, M., Malaka, R., Nguyen, D.D., Schwind, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 175–186. [Google Scholar]
- Daneels, A.; Salter, W. What is SCADA. Available online: /paper/What-is-SCADA-Daneels-Salter/4b9ae869fb8d812c73cf3311c860cc8260e3d88f (accessed on 20 August 2020).
- Berrú-Ayala, J.; Hernandez-Rojas, D.; Morocho-Díaz, P.; Novillo-Vicuña, J.; Mazon-Olivo, B.; Pan, A. SCADA System Based on IoT for Intelligent Control of Banana Crop Irrigation. In Proceedings of the Applied Technologies; Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–256. [Google Scholar]
- Pandiarajan, P.S.; Rajeswari, P.; Suthapriya, S.; Vimala, M. Mobile SCADA for crop field management. Adv. Nat. Appl. Sci. 2016, 10, 103–108. [Google Scholar]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Xu, T.; Su, N.; Wang, R.; Song, L. A Novel variable rate fertilization system based on the Android platform. In Proceedings of the 2015 IEEE International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 18–20 December 2015; pp. 395–398. [Google Scholar]
- Pobkrut, T.; Kerdcharoen, T. Soil sensing survey robots based on electronic nose. In Proceedings of the 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), KINTEX, Gyeonggi, Korea, 22–25 October 2014; pp. 1604–1609. [Google Scholar]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Young, S.N.; Kayacan, E.; Peschel, J.M. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precis. Agric. 2019, 20, 697–722. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Yukumoto, O.; Yamamoto, S.; Noguchi, N.; Hara, Y. Enhanced Adaptability of Tilling Robot (2nd Report). Jpn. Agric. Res. Q. JARQ 2013, 47, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Ashok, G. Design and fabrication of smart seed sowing robot. In Materials Today: Proceedings; Elsevier B.V. (Corporate Office): Radarweg, Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Tamaki, K.; Nagasaka, Y.; Kobayashi, K. A rice transplanting robot contributing to credible food safety system. In Proceedings of the 2009 IEEE Workshop on Advanced Robotics and its Social Impacts, Tokyo, Japan, 23–25 November 2009; pp. 78–79. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2019, 37, 202–224. [Google Scholar] [CrossRef] [Green Version]
- Nørremark, M.; Griepentrog, H.W.; Nielsen, J.; Søgaard, H.T. Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area. Precis. Agric. 2011, 13, 149–162. [Google Scholar] [CrossRef]
- Liebisch, F.; Pfeifer, J.; Khanna, R.; Lottes, P.; Stachniss, C.; Falck, T.; Sander, S.; Siegwart, R.; Walter, A.; Galceran, E. Flourish—A robotic approach for automation in crop management. In Proceedings of the Workshop computer-Bildanalyse und Unbemannte Autonom Fliegende Systeme in der Landwirtschaft, Wernigerode, Germany, 21 April 2016; pp. 3–10. [Google Scholar]
- Vellidis, G.; Liakos, V.; Andreis, J.H.; Perry, C.D.; Porter, W.M.; Barnes, E.M.; Morgan, K.T.; Fraisse, C.; Migliaccio, K.W. Development and assessment of a smartphone application for irrigation scheduling in cotton. Comput. Electron. Agric. 2016, 127, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.A.; Kowalski, K.; Tebbe, C. The first Nitrogen Index app for mobile devices: Using portable technology for smart agricultural management. Comput. Electron. Agric. 2013, 91, 121–123. [Google Scholar] [CrossRef]
- Petrellis, N. Plant Disease Diagnosis for Smart Phone Applications with Extensible Set of Diseases. Appl. Sci. 2019, 9, 1952. [Google Scholar] [CrossRef] [Green Version]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
General Categorization | Subcategorization | Solution(s) |
---|---|---|
Data Collection and IoT | IoT | [21,22,23,39,62,69,80,97] |
Satellite Imagery and GIS | [19,28,40,44,46,57,85] | |
Satellite Navigation | [18,43,90,91,92,95,96,98,100] | |
Wireless Sensor Networks | [21,22,23,24,40,56,62,69,70,88,98] | |
Data Analysis and AI | Big Data Analytics | [32,34,36,40,47,86] |
Computer Vision | [19,43,44,46,47,48,50,51,52,55,56,57,63,68,85,90,95,99,101,104,105] | |
Data Fusion | [50,51,57] | |
Data Reconstruction | [47,67,68] | |
Decision Support | Risk-Crisis Management: [39,40] | |
Miscellaneous: [23,32,34,36,82,101] | ||
Decomposition Algorithms | [36,65,66] | |
Denoising Algorithms | [67] | |
Evaluation Models | [52,53,65] | |
Evolutionary Algorithms | Genetic Algorithms: [34,44] | |
Fuzzy Logic | [21,64,81] | |
Geostatistical Models | [26,27,28] | |
Granulation Techniques | [34] | |
Interpolation Techniques | [26,28] | |
Machine Learning | Clustering Models: [27] | |
Deep Learning: [37,48,52] | ||
Neural Networks: [21,32,36,37,44,48,65,66] | ||
Support Vector Machines: [34,51] | ||
Miscellaneous: [35] | ||
Μeta-Heuristic Algorithms | [29] | |
Pattern-Matching Algorithms | [57] | |
Proportional-Integral-Derivative (PID) Control | [64] | |
Predictive Models | [21,32,34,35,36,37,39,40] | |
Reconstruction Algorithms | [101] | |
Semantic Processing | Ontology Engineering: [82,86] | |
Semantic Modeling: [62,63] | ||
Simulation Models | [29,35,64,100,102,103] | |
Visualization Tools | Augmented Reality (AR)/Virtual Reality (VR): [56,57,58,59] | |
Miscellaneous: [55,84] | ||
Data Storage and Distribution | Blockchain | [78,79,80,81] |
Cloud Storage | [23,74,75,83] | |
Database Management | [57] | |
Distributed Databases | [74,79] | |
Machine-to-Machine (M2M) Communications | [22] | |
Sharing Platforms | [69,70,71,72,74] | |
Smart Contracts | [80,81] | |
Multi-Purpose Platforms | Cyber-Physical Systems (CPS) | Unmanned Aerial Vehicles (UAVs): [43,48,50,90,101] |
Unmanned Ground Vehicles (UGVs): [63,64,65,81,91,92,95,96,97,98,99,100,101] | ||
Digital Platforms | [23,84,85,101] | |
Management Information Systems | [72,82,83] | |
Mobile Applications | [75,91,97,102,103,104,105] | |
Supervisory Control and Data Acquisition (SCADA) | [88,89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demestichas, K.; Daskalakis, E. Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology. Agronomy 2020, 10, 1648. https://doi.org/10.3390/agronomy10111648
Demestichas K, Daskalakis E. Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology. Agronomy. 2020; 10(11):1648. https://doi.org/10.3390/agronomy10111648
Chicago/Turabian StyleDemestichas, Konstantinos, and Emmanouil Daskalakis. 2020. "Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology" Agronomy 10, no. 11: 1648. https://doi.org/10.3390/agronomy10111648
APA StyleDemestichas, K., & Daskalakis, E. (2020). Data Lifecycle Management in Precision Agriculture Supported by Information and Communication Technology. Agronomy, 10(11), 1648. https://doi.org/10.3390/agronomy10111648