Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phytochemical Analysis
2.3. DNA Extraction
2.4. SSR Genotyping
2.5. Genetic Diversity and Population Structure
2.6. Development and Evaluation of the Core Collection
3. Results
3.1. Phytochemical Diversity of 462 Tea Accessions
3.2. Clustering Analysis
3.3. SSR Fingerprinting
3.4. Population Structure
3.5. Development and Evaluation of a Core Collection
4. Discussion
4.1. Phytochemical Diversity of Tea Germplasm
4.2. Genetic Diversity of Tea Germplasm
4.3. Development of a Target-Oriented Core Collection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TOCC | Target-oriented core collection |
ENC | Entire collection |
C | (+)-Catechin |
CG | (−)-Catechin 3-gallate |
EC | (−)-Epicatechin |
ECG | (−)-Epigallocatechin 3-gallate |
EGCG | (−)-Epigallocatechin 3-gallate |
GC | (−)-Gallocatechin |
GCG | (−)-Gallocatechin 3-gallate |
TC | Total catechin |
References
- Engels, J.; Fassil, H. Plant and Animal Genebanks. In Encyclopdia of Life Support Systems; UNESCO, Ed.; Eolss Publishers: Paris, France, 1999; p. 34. [Google Scholar]
- Qi-Lun, Y.; Fan, P.; Zou, S.-X. Constructing a Core Collection for Maize (Zea mays L.) Landrace from Wuling Mountain Region in China. Agric. Sci. China 2008, 7, 1423–1432. [Google Scholar] [CrossRef]
- Odong, T.L.; Jansen, J.; Van Eeuwijk, F.A.; Van Hintum, T.J.L. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 2012, 126, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Frankel, O.H. Genetic perspectives of germplasm conservation. In Genetic Manipulation: Impact on Man and Society; Arber, W., Illemensee, K., Peacock, W.J., Starlinger, P., Eds.; Cambridge University Press: Cambridge, UK, 1984; pp. 161–170. [Google Scholar]
- Brown, A.H.D. Core collections: A practical approach to genetic resources management. Genome 1989, 31, 818–824. [Google Scholar] [CrossRef]
- Wambulwa, M.C.; Meegahakumbura, M.K.; Kamunya, S.; Muchugi, A.; Möller, M.; Liu, J.; Xu, J.-C.; Ranjitkar, S.; Olinirina, N.; Gao, L.-M. Insights into the Genetic Relationships and Breeding Patterns of the African Tea Germplasm Based on nSSR Markers and cpDNA Sequences. Front. Plant Sci. 2016, 7, 1244. [Google Scholar] [CrossRef] [Green Version]
- Bramel, P.; Chen, L. A Global Strategy for the Conservation and Use of Tea Genetic Resources; The Crop Trust: Bonn, Germany, 2019. [Google Scholar]
- Chen, L. Tea genetic resources in China. Int. J. Tea Sci. 2012, 8, 1–10. [Google Scholar]
- Raina, S.N.; Ahuja, P.S.; Sharma, R.K.; Das, S.C.; Bhardwaj, P.; Negi, R.; Sharma, V.; Singh, S.S.; Sud, R.K.; Kalia, R.K.; et al. Genetic structure and diversity of India hybrid tea. Genet. Resour. Crop. Evol. 2011, 59, 1527–1541. [Google Scholar] [CrossRef]
- Ranatunga, M.; Gunasekare, M. Stratification of Camellia Germplasm to Facilitate Construction of Core Collection; A Prerequisite for Tea Crop Improvement. Sri Lanka J. Tea Sci. 2009, 74, 62–73. [Google Scholar]
- Taniguchi, F.; Kimura, K.; Saba, T.; Ogino, A.; Yamaguchi, S.; Tanaka, J. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet. Genomes 2014, 10, 1555–1565. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Yang, Y. Establishment of core collection for Chinese tea germplasm based on cultivated region grouping and phenotypic data. Front. Agric. China 2011, 5, 344–350. [Google Scholar] [CrossRef]
- Ni, S.; Yao, M.-Z.; Chen, L.; Zhao, L.-P.; Wang, X.-C.; Apostolides, Z.; Chen, Z.-M. Germplasm and Breeding Research of Tea Plant Based on DNA Marker Approaches. In Uncertainty Modeling for Data Mining; Springer Science and Business Media LLC: Berlin, Germany, 2012; pp. 361–376. [Google Scholar]
- Gunasekare, M.; Ranatunga, M.; Piyasundara, J.H.N.; Kottawa-Arachchi, J. Tea genetic resources in Sri Lanka: Collection, Conservation and Appraisal. Int. J. Tea Sci. 2012, 8, 51–60. [Google Scholar]
- Kottawa-Arachchi, J.D.; Gunasekare, M.T.K.; Ranatunga, M.A.B. Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: A review. Genet. Resour. Crop. Evol. 2018, 66, 259–273. [Google Scholar] [CrossRef]
- Ullah, J.; Shah, A.; Nisar, M.; Khan, U.; Khan, J.; Ahmad, H.; Rokhan, G.; Jabalok, B. Biochemical characterization of lentil germplasm for genetic diversity. Plant Cell Biotech. Mol. Biol. 2016, 17, 7–13. [Google Scholar]
- Xia, E.-H.; Tong, W.; Wu, Q.; Wei, S.; Zhao, J.; Zhang, Z.-Z.; Wei, C.; Wan, X. Tea plant genomics: Achievements, challenges and perspectives. Hortic. Res. 2020, 7, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhou, Z.X.; Chen, L.; Zhou, Z.X. Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm Tea Repository. Plant Foods Hum. Nutr. 2005, 60, 31–35. [Google Scholar] [CrossRef]
- Yü, Y.; Deng, Y.; Lu, B.-M.; Liu, Y.-X.; Li, J.; Bao, J.-K. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis 2013, 19, 1–18. [Google Scholar] [CrossRef]
- Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masek, A. Antioxidant and Antiradical Properties of Green Tea Extract Compounds. Int. J. Electrochem. Sci. 2017, 12, 6600–6610. [Google Scholar] [CrossRef]
- Matsumoto, S.; Kiriiwa, Y.; Yamaguchi, S. The Korean Tea Plant (Camellia sinensis): RFLP Analysis of Genetic Diversity and Relationship to Japanese Tea. Breed. Sci. 2004, 54, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Wachira, F.; Tanaka, J.; Takeda, Y. Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J. Hortic. Sci. Biotechnol. 2001, 76, 557–563. [Google Scholar] [CrossRef]
- Kaundun, S.S.; Zhyvoloup, A.; Park, Y.-G. Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica 2000, 115, 7–16. [Google Scholar] [CrossRef]
- Chen, L.; Yamaguchi, S. RAPD markers for discriminating tea germplasms at the inter-specific level in China. Plant Breed. 2005, 124, 404–409. [Google Scholar] [CrossRef]
- Young-Goo, P.; Kaundun, S.S.; Zhyvoloup, A. Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korean tea plantations. Genet. Resour. Crop. Evol. 2002, 49, 159–165. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, J.-R.; Raveendar, S.; Shin, M.-J.; Kim, S.-H.; Cho, G.-T.; Hyun, D.Y. Assessment of Genetic Diversity of Tea Germplasm for Its Management and Sustainable Use in Korea Genebank. Forest 2019, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Meegahakumbura, M.K.; Wambulwa, M.C.; Li, M.-M.; Thapa, K.K.; Sun, Y.; Moller, M.; Xu, J.-C.; Yang, J.-B.; Liu, J.; Liu, B.-Y.; et al. Domestication Origin and Breeding History of the Tea Plant (Camellia sinensis) in China and India Based on Nuclear Microsatellites and cpDNA Sequence Data. Front. Plant Sci. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Cheng, H.; Duan, Y.; Jiang, X.; Li, X. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst. Evol. 2011, 298, 469–483. [Google Scholar] [CrossRef]
- Korir, N.K.; Han, J.; Shangguan, L.; Wang, C.; Kayesh, E.; Zhang, Y.; Fang, J. Plant variety and cultivar identification: Advances and prospects. Crit. Rev. Biotechnol. 2012, 33, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.A.; Yang, W.C.; Hsiao, J.Y. An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot. Bull. Acad. Sin. 2001, 42, 93–100. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Ori, F.; Ma, J.-Q.; Gori, M.; Lenzi, A.; Chen, L.; Giordani, E. DNA-based diversity of tea plants grown in Italy. Genet. Resour. Crop. Evol. 2017, 64, 1905–1915. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; GrünwaldN, J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Earl, D.A.; Vonholdt, B.M. Structure Harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivandic, V.; Hackett, C.A.; Nevo, E.; Keith, R.; Thomas, W.T.; Forster, B.P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geography and flowering time. Plant Mol. Biol. 2002, 48, 511–527. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-W.; Chung, H.-K.; Cho, G.-T.; Ma, K.-H.; Chandrabalan, D.; Gwag, J.-G.; Kim, T.-S.; Cho, E.-G.; Park, Y.-J. PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 2007, 23, 2155–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Xu, H.M.; Zhu, J. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 2000, 101, 264–268. [Google Scholar] [CrossRef]
- Perrier, X.; Jacquemoud-Collet, J.P. DARwin Software. 2006. Available online: http://darwin.cirad.fr (accessed on 9 September 2020).
- Ahmed, S.; Stepp, J.R. Chapter 5—Pu-erh Tea: Botany, Production, and Chemistry. In Tea in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 59–71. [Google Scholar]
- Anand, J.; Upadhyaya, B.; Rawat, P.; Rai, N. Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech 2014, 5, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Gao, M.-J.; Hou, R.-Y.; Hu, X.-Y.; Zhang, L.; Wan, X.-C.; Wei, S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem. 2014, 155, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Wang, Y.; Jiang, J.; Xie, H.; Ding, Z.; Ding, S.; Wang, H. The Quality Evaluation of Tea (Camellia sinensis) Varieties Based on the Metabolomics. HortScience 2019, 54, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Mondal, T.K. Breeding and Biotechnology of Tea and Its Wild Species; Springer Science and Business Media LLC: Berlin, Germany, 2014; pp. 1–167. [Google Scholar]
- Chen, Z.-M.; Chen, L.; Apostolides, Z. Delicious and Healthy Tea: An Overview. In Uncertainty Modeling for Data Mining; Springer Science and Business Media LLC: Berlin, Germany, 2012; pp. 1–11. [Google Scholar]
- Yao, M.Z.; Chen, L.; Liang, Y.R. Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breed. 2008, 127, 166–172. [Google Scholar] [CrossRef]
- Jin, J.-Q.; Ma, J.-Q.; Ma, C.-L.; Yao, M.-Z.; Chen, L. Determination of Catechin Content in Representative Chinese Tea Germplasms. J. Agric. Food Chem. 2014, 62, 9436–9441. [Google Scholar] [CrossRef] [PubMed]
- Punyasiri, P.N.; Jeganathan, B.; Kottawa-Arachchi, J.D.; Ranatunga, M.A.B.; Abeysinghe, I.S.B.; Gunasekare, M.T.K.; Bandara, B.M.R. New Sample Preparation Method for Quantification of Phenolic Compounds of Tea (Camellia sinensis L. Kuntze): A Polyphenol Rich Plant. J. Anal. Methods Chem. 2015, 2015, 964341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulati, A.; Rajkumar, S.; Karthigeyan, S.; Sud, R.K.; Vijayan, D.; Thomas, J.; Rajkumar, R.; Das, S.C.; Tamuly, P.; Hazarika, M.; et al. Catechin and Catechin Fractions as Biochemical Markers to Study the Diversity of Indian Tea (Camellia sinensis (L.) O. Kuntze) Germplasm. Chem. Biodivers. 2009, 6, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Wang, L.; Zhou, J.; He, W.; Zeng, J.; Jiang, Y.; Cheng, H. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem. 2011, 125, 44–48. [Google Scholar] [CrossRef]
- Robertson, A. The chemistry and biochemistry of black tea production—The non-volatiles. In Tea: Cultivation to Consumption; Willson, K.C., Clifford, M.N., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 555–601. [Google Scholar]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł.; Marzec, Z.; Szwerc, W.; Głowniak, K. Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules 2018, 23, 1689. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.-Y. Theaflavins in Black Tea and Catechins in Green Tea Are Equally Effective Antioxidants. J. Nutr. 2001, 131, 2248–2251. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Zhu, Q.Y.; Tsang, D.; Huang, Y. Degradation of Green Tea Catechins in Tea Drinks. J. Agric. Food Chem. 2001, 49, 477–482. [Google Scholar] [CrossRef]
- Yao, L.; Caffin, N.; D’Arcy, B.; Jiang, Y.; Shi, J.; Singanusong, R.; Liu, X.; Datta, N.; Kakuda, Y.; Xu, Y. Seasonal Variations of Phenolic Compounds in Australia-Grown Tea (Camellia sinensis). J. Agric. Food Chem. 2005, 53, 6477–6483. [Google Scholar] [CrossRef] [PubMed]
- Gill, M. Speciality and herbal teas. In Tea; Springer Science and Business Media LLC: Berlin, Germany, 1992; pp. 513–534. [Google Scholar]
- Tanaka, J.; Chen, L.; Apostolides, Z.; Chen, Z.-M. Japanese Tea Breeding History and the Future Perspective; Springer Science and Business Media LLC: Berlin, Germany, 2012; pp. 227–239. [Google Scholar]
- Vigouroux, Y.; Glaubitz, J.C.; Matsuoka, Y.; Goodman, M.M.; Sánchez, G.J.; Doebley, J. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am. J. Bot. 2008, 95, 1240–1253. [Google Scholar] [CrossRef]
- Yao, M.-Z.; Ma, C.-L.; Qiao, T.-T.; Jin, J.-Q.; Chen, L. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 2011, 8, 205–220. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Chen, X.; Sun, W.; Li, J. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers. Hereditas 2018, 155, 22. [Google Scholar] [CrossRef] [Green Version]
- Campoy, J.A.; Lerigoleur, E.; Christmann, H.; Beauvieux, R.; Girollet, N.; Quero-García, J.; Dirlewanger, E.; Barreneche, T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016, 16, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.J.; Lee, J.-R.; Sebastin, R.; Cho, G.-T.; Hyun, D.Y. Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation. Agronomy 2020, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Shahid, M.Q.; Bai, L.; Lu, Z.; Chen, Y.; Jiang, L.; Diao, M.; Liu, X.; Lu, Y. Evaluation of Genetic Diversity and Development of a Core Collection of Wild Rice (Oryza rufipogon Griff.) Populations in China. PLoS ONE 2015, 10, e0145990. [Google Scholar] [CrossRef] [Green Version]
- Belaj, A.; Dominguez-García, M.D.C.; Atienza, S.G.; Urdíroz, N.M.; De La Rosa, R.; Satovic, Z.; Martín, A.; Kilian, A.; Trujillo, I.; Valpuesta, V.; et al. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 2011, 8, 365–378. [Google Scholar] [CrossRef]
- Kumar, S.; Ambreen, H.; Variath, M.T.; Rao, A.R.; Agarwal, M.; Kumar, A.; Goel, S.; Jagannath, A. Utilization of Molecular, Phenotypic, and Geographical Diversity to Develop Compact Composite Core Collection in the Oilseed Crop, Safflower (Carthamus tinctorius L.) through Maximization Strategy. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Le, D.S.; Pagès, J. Analyse factorielle multiple hiérarchique. Rev. Stat. Appl. 2003, 51, 47–73. [Google Scholar]
- Yanfang, Z.; DeChang, H.; Jincheng, Z.; Ping, Z.; Zhaohong, W.; Chuanjie, C. Development of a mulberry core collection originated in China to enhance germplasm conservation. Crop. Breed. Appl. Biotechnol. 2019, 19, 55–61. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Ro, N.-Y.; Jeong, H.-J.; Kwon, J.-K.; Jo, J.; Ha, Y.; Jung, A.; Han, J.-W.; Venkatesh, J.; Kang, B.-C. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 2016, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Galwey, N.W. Verifying and validating the representativeness of a core collection. In Core Collections of Plant Genetic Resources; Hodgkin, T.B.A., van Hintum, T.J.L., Morales, E.A.V., Eds.; John Wiley and Sons: Chichester, UK, 2005; pp. 187–198. [Google Scholar]
Phytochenical | Year | Min | Max | Mean | SD | Median | Skewness | Kurtosis | CV (%) | H’1 |
---|---|---|---|---|---|---|---|---|---|---|
C | 2018 | 0.32 | 42.53 | 3.14 | 4.38 | 2.03 | 5.12 | 31.94 | 139.37 | 1.14 |
2019 | 1.05 | 19.13 | 4.76 | 2.87 | 4.04 | 1.75 | 4.34 | 60.26 | 1.86 | |
Caf | 2018 | 0.44 | 36.64 | 17.42 | 5.20 | 16.96 | −0.02 | 1.41 | 29.83 | 2.00 |
2019 | 0.39 | 28.79 | 15.95 | 5.24 | 16.29 | −0.46 | 0.15 | 32.86 | 2.07 | |
CG | 2018 | 0.15 | 5.61 | 1.30 | 1.03 | 0.97 | 1.27 | 1.49 | 79.22 | 1.88 |
2019 | 0.34 | 21.76 | 2.47 | 1.72 | 2.06 | 4.60 | 39.43 | 69.53 | 1.65 | |
EC | 2018 | 3.42 | 26.58 | 10.40 | 3.21 | 10.07 | 1.05 | 2.50 | 30.83 | 2.02 |
2019 | 1.98 | 22.88 | 8.12 | 2.97 | 7.73 | 0.98 | 1.88 | 36.59 | 2.00 | |
ECG | 2018 | 1.96 | 17.98 | 7.88 | 2.84 | 7.51 | 0.71 | 0.53 | 36.01 | 2.03 |
2019 | 3.15 | 34.42 | 14.68 | 4.89 | 14.64 | 0.38 | 0.51 | 33.30 | 2.07 | |
EGCG | 2018 | 13.15 | 95.90 | 44.74 | 12.31 | 43.74 | 0.39 | 0.40 | 27.51 | 2.06 |
2019 | 11.49 | 91.34 | 50.20 | 15.01 | 50.38 | 0.02 | −0.05 | 29.90 | 2.08 | |
GC | 2018 | 0.67 | 13.71 | 3.05 | 1.86 | 2.61 | 2.22 | 6.74 | 60.88 | 1.74 |
2019 | 3.21 | 15.57 | 7.72 | 1.84 | 7.53 | 0.53 | 0.73 | 23.87 | 2.03 | |
GCG | 2018 | 0.01 | 3.49 | 0.50 | 0.43 | 0.38 | 2.84 | 12.26 | 85.69 | 1.67 |
2019 | 0.33 | 9.75 | 1.89 | 1.07 | 1.62 | 1.81 | 6.92 | 56.70 | 1.87 | |
TC | 2018 | 34.14 | 125.25 | 70.04 | 15.37 | 68.50 | 0.53 | 0.23 | 21.94 | 2.05 |
2019 | 42.03 | 152.30 | 89.77 | 19.04 | 89.00 | 0.08 | 0.07 | 21.21 | 2.06 |
Year | Group | N 1 | C | Caf | CG | EC | ECG | EGCG | GC | GCG | TC |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | I | 108 | 3.66b 2 | 19.83a | 1.95a | 11.16ab | 10.94a | 55.78a | 3.55a | 7.99a | 92.18a |
II | 111 | 2.06c | 17.84b | 1.22b | 8.75c | 7.10b | 45.62b | 2.40c | 4.63bc | 65.56b | |
III | 59 | 10.71a | 12.88c | 1.50b | 11.62a | 5.70c | 33.59d | 3.21ab | 5.66b | 67.46b | |
IV | 184 | 2.63bc | 17.21b | 1.27b | 10.55b | 7.24b | 41.25c | 3.09b | 3.95c | 65.36b | |
2019 | I | 108 | 5.01b | 18.66a | 2.35b | 7.67b | 18.34a | 59.04a | 7.83b | 25.25a | 124.85a |
II | 111 | 4.70b | 19.80a | 2.25b | 7.43b | 17.54a | 61.10a | 8.89a | 20.74b | 121.84a | |
III | 59 | 8.60a | 9.37c | 4.32a | 11.11a | 9.64c | 32.21c | 6.68c | 19.52b | 91.59b | |
IV | 184 | 3.50c | 13.76b | 2.21b | 7.91b | 12.15b | 43.23b | 7.24bc | 13.89c | 89.60b |
Locus | Na 1 | Ng | S | He | Evenness | Locus | Na | Ng | S | He | Evenness |
---|---|---|---|---|---|---|---|---|---|---|---|
MSE0029 | 14 | 63 | 2.25 | 0.86 | 0.79 | MSG0699 | 20 | 101 | 1.02 | 0.86 | 0.70 |
MSE0083 | 23 | 103 | 1.92 | 0.88 | 0.74 | TM241 | 9 | 30 | 2.03 | 0.75 | 0.81 |
MSE0107 | 19 | 66 | 2.03 | 0.82 | 0.66 | TM324 | 5 | 10 | 2.05 | 0.56 | 0.84 |
MSE0113 | 18 | 63 | 1.91 | 0.84 | 0.76 | TM337 | 14 | 68 | 1.83 | 0.87 | 0.83 |
MSE0173 | 12 | 47 | 2.40 | 0.82 | 0.80 | TM341 | 9 | 22 | 1.48 | 0.71 | 0.76 |
MSE0237 | 9 | 19 | 1.15 | 0.54 | 0.65 | TM351 | 6 | 13 | 1.09 | 0.7 | 0.90 |
MSE0291 | 13 | 59 | 1.35 | 0.78 | 0.69 | TM382 | 11 | 49 | 2.17 | 0.82 | 0.85 |
MSE0313 | 17 | 59 | 2.30 | 0.83 | 0.73 | TM422 | 22 | 94 | 2.42 | 0.88 | 0.73 |
MSE0403 | 16 | 58 | 2.15 | 0.79 | 0.64 | TM428 | 13 | 59 | 1.17 | 0.8 | 0.67 |
MSG0258 | 18 | 101 | 1.79 | 0.87 | 0.79 | TM447 | 7 | 22 | 1.44 | 0.75 | 0.88 |
MSG0361 | 18 | 68 | 1.82 | 0.87 | 0.74 | TM461 | 8 | 28 | 0.92 | 0.77 | 0.78 |
MSG0380 | 15 | 79 | 2.18 | 0.86 | 0.77 | TM480 | 5 | 10 | 1.93 | 0.63 | 0.85 |
MSG0423 | 20 | 76 | 1.88 | 0.84 | 0.70 | TM530 | 7 | 25 | 1.20 | 0.68 | 0.73 |
MSG0429 | 13 | 44 | 2.26 | 0.76 | 0.61 | TM576 | 7 | 14 | 1.56 | 0.56 | 0.57 |
MSG0470 | 17 | 58 | 1.82 | 0.81 | 0.74 | TM581 | 7 | 16 | 1.65 | 0.62 | 0.71 |
MSG0610 | 10 | 40 | 2.16 | 0.78 | 0.73 | TM604 | 7 | 16 | 1.26 | 0.65 | 0.85 |
MSG0681 | 19 | 78 | 2.14 | 0.87 | 0.82 | Mean | 13.0 | 50.2 | 1.78 | 0.77 | 0.75 |
Origin | N 1 | Na | Ng | S | He | Evenness |
---|---|---|---|---|---|---|
KOR | 408 | 11.8 | 43.6 | 1.73 | 0.76 | 0.76 |
JPN | 13 | 5.9 | 6.8 | 1.42 | 0.73 | 0.78 |
IDN | 3 | 3.2 | 2.4 | 1.05 | 0.76 | 0.90 |
CHN | 38 | 10.5 | 18.4 | 1.91 | 0.81 | 0.79 |
df 1 | SS | MS | Est. Var. | % | PhiPT | p Value | |
---|---|---|---|---|---|---|---|
Regional pools | |||||||
Among Populations | 3 | 326.490 | 108.830 | 2.199 | 6% | 0.056 | 0.001 |
Within Populations | 458 | 16,882.545 | 36.861 | 36.861 | 94% | - | - |
Total | 461 | 17,209.035 | - | 39.061 | 100% | - | - |
Sub-population derived from clustering analysis | |||||||
Among Populations | 3 | 211.739 | 70.580 | 0.305 | 1% | 0.008 | 0.001 |
Within Populations | 458 | 16,997.296 | 37.112 | 37.112 | 99% | - | - |
Total | 461 | 17,209.035 | - | 37.417 | 100% | - | - |
Sub-population derived from STRUCTURE | |||||||
Among Populations | 1 | 77.344 | 77.344 | 0.175 | 0% | 0.005 | 0.003 |
Within Populations | 460 | 17,131.690 | 37.243 | 37.243 | 100% | - | - |
Total | 461 | 17,209.035 | - | 37.418 | 100% | - | - |
Sub-population derived from DAPC | |||||||
Among Populations | 3 | 263.207 | 87.736 | 0.456 | 1% | 0.012 | 0.001 |
Within Populations | 458 | 16,945.828 | 37.000 | 37.000 | 99% | - | - |
Total | 461 | 17,209.035 | - | 37.456 | 100% | - | - |
C 1 | Caf | CG | EC | ECG | EGCG | GC | GCG | TC | ||
---|---|---|---|---|---|---|---|---|---|---|
2018 | Entire Collection | 3.14 | 17.42 | 1.30 | 10.40 | 7.88 | 44.74 | 3.05 | 0.50 | 70.04 |
Target-oriented core collection | 3.93 | 16.71 | 1.26 | 10.45 | 7.43 | 43.42 | 2.91 | 0.47 | 68.58 | |
ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
2019 | Entire Collection | 4.76 | 15.95 | 2.45 | 8.12 | 14.68 | 50.20 | 7.72 | 1.89 | 89.78 |
Target-oriented core collection | 4.61 | 15.91 | 2.45 | 8.04 | 14.53 | 50.73 | 7.56 | 1.91 | 89.85 | |
ns | ns | ns | ns | ns | ns | ns | ns | ns |
N 1 | MD% 1 | VD% | VR% | CR% | Na | I | H | |
---|---|---|---|---|---|---|---|---|
Entire Collection (ENC) | 462 | - | - | - | - | 2.11 | 0.308 | 0.195 |
Target-oriented core collections (TOCC) | 100 | 7.88 | 39.33 | 120.79 | 97.43 | 2.11 | 0.335 | 0.209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, D.Y.; Gi, G.-Y.; Sebastin, R.; Cho, G.-T.; Kim, S.-H.; Yoo, E.; Lee, S.; Son, D.-M.; Lee, K.J. Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm. Agronomy 2020, 10, 1667. https://doi.org/10.3390/agronomy10111667
Hyun DY, Gi G-Y, Sebastin R, Cho G-T, Kim S-H, Yoo E, Lee S, Son D-M, Lee KJ. Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm. Agronomy. 2020; 10(11):1667. https://doi.org/10.3390/agronomy10111667
Chicago/Turabian StyleHyun, Do Yoon, Gwang-Yeon Gi, Raveendar Sebastin, Gyu-Taek Cho, Seong-Hoon Kim, Eunae Yoo, Sookyeong Lee, Dong-Mo Son, and Kyung Jun Lee. 2020. "Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm" Agronomy 10, no. 11: 1667. https://doi.org/10.3390/agronomy10111667
APA StyleHyun, D. Y., Gi, G. -Y., Sebastin, R., Cho, G. -T., Kim, S. -H., Yoo, E., Lee, S., Son, D. -M., & Lee, K. J. (2020). Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm. Agronomy, 10(11), 1667. https://doi.org/10.3390/agronomy10111667