Pearl Millet Forage Water Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Field Preparation
2.2. Irrigation Management
2.3. Soil Moisture
2.4. Weather Data
2.5. Crop Growth and Forage Yield Measurements
2.6. Statistical Design and Analysis
3. Results
3.1. Weather, Irrigation, and Soil Moisture
3.1.1. Seasonal Weather
3.1.2. Irrigation
3.1.3. Soil Moisture
3.2. Treatment Effects: Irrigation, Row Spacing and Tillage
3.2.1. Plant Growth and Forage Dry Matter
3.2.2. Light Interception and Leaf Area Index
4. Discussion
4.1. Explaining Water Use Efficiency
4.1.1. Water Use Efficiency and Soil Nutrient Supply
4.1.2. Weed Influence on Pearl Millet Water Use Efficiency
4.1.3. Water Use Efficiency Response to Agronomics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farooq, M.; Hauuain, M.; Ul-Allah, S.; Siddique, K.H.M. Physiological and Agronomic Approaches for Improving Water-Use Efficiency in Crop Plants. Agric. Water Manag. 2019, 219, 95–108. [Google Scholar] [CrossRef]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors Affecting Crop Water Use Efficiency: A Worldwide Meta-Analysis. Agric. Water Manag. 2020, 228. [Google Scholar] [CrossRef]
- Andrews, D.L.; Kumar, K.A. Pearl millet for food, feed, and forage. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press, Inc.: Cambridge, MA, USA, 1992; Volume 48, pp. 89–139. [Google Scholar]
- Mason, S.C.; Maman, N.; Pale, S. Pearl Millet Production Practices in Semi-Arid West Africa: A Review. Exp. Agric. 2015, 15, 501–541. [Google Scholar] [CrossRef]
- Samake, O.; Stomph, T.J.; Kropff, M.J. Integrated Pearl Millet Management in the Sahel: Effects of Legume Rotation and Follow Management on Productivity and Striga hermonthica infestation. Plant Soil 2006, 286, 245–257. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Salinas-Garcia, J. Dryland agriculture in Mexico and the U.S. Southern Great Plains. In Dryland Agriculture, 2nd ed.; Agronomy Monograph No. 23; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2006. [Google Scholar]
- Bhattarai, B.; Singh, S.; West, C.P.; Saini, R. Forage Potential of Pearl Millet and Forage Sorghum Alternatives to Corn under the Water-Limiting Conditions of the Texas High Plains: A Review. Crop Forage Turfgrass Manag. 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Machicek, J.A.; Blaser, B.C.; Darapuneni, M.; Rhoades, M.B. Harvesting regimes affect brown midrib sorghum-sudangrass and brown midrib pearl millet forage production and quality. Agronomy 2019, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- FAO. Production Quantities of Millet by Country. FAOSTAT, Crops. 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 22 October 2020).
- Ismail, S.M. Optimizing Productivity and Irrigation Water Use Efficiency of Pearl Millet as a Forage Crop in Arid Regions Under Different Irrigation Methods and Stress. Afr. J. Agric. Res. 2012, 7, 2509–2518. [Google Scholar] [CrossRef]
- Sharma, B.; Kumari, R.; Kumari, P.; Meena, S.K.; Singh, R.M. Effect of Planting Pattern of Productivity and Water Use Efficiency of Pearl Millet in the Indian Semi-Arid Region. J. Indian Soc. Soil Sci. 2015, 6, 259–265. [Google Scholar] [CrossRef]
- Silungwe, F.R.; Graef, F.; Bellingrath-Kimura, S.D.; Tumbo, S.D.; Kahimba, F.C.; Lana, M.A. The Management Strategies of Pearl Millet Farmers to Cope with Seasonal Rainfall Variability in a Semi-Arid Agroclimate. Agronomy 2019, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Payne, W.A. Managing yield and water use of pearl millet in the Sahel. Agron. J. 1997, 89, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Maman, N.; Lyon, D.J.; Mason, S.C.; Galusha, T.D.; Higgins, R. Pearl millet and grain sorghum yield responses to water supply in Nebraska. Agron. J. 2003, 95, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl Millet, and Corn Under Water Limiting Conditions. Agric. Water Manag. 2020, 238, 106206. [Google Scholar] [CrossRef]
- Jahansouz, M.R.; Afshar, R.K.; Heidari, H.; Hashemi, M. Evaluation of Yield and Quality of Sorghum and Millet as Alternative Forage Crops to Corn under Normal and Deficit Irrigation Regimes. Jordan J. Agric. Sci. 2014, 10, 699–715. Available online: https://platform.almanhal.com/Files/2/94696 (accessed on 20 October 2020).
- Ibrahim, A.; Abaidoo, R.C.; Fatandji, D.; Opoku, A. Hill Placement of Manure and Fertilizer Micro-Dosing Improves Yield and Water Use Efficiency in the Sahelian Low Input Millet-Based Cropping System. Field Crops Res. 2015, 180, 29–36. [Google Scholar] [CrossRef]
- Manyame, C. On-Farm Yield and Water Use Response of Pearl Millet to Different Management Practices in Niger. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2006. Available online: https://core.ac.uk/download/pdf/147132537.pdf (accessed on 20 October 2020).
- Neal, J.S.; Fulkerson, W.J.; Hacker, R.B. Differences in Water Use Efficiency among Annual Forages Used by the Dairy Industry Under Optimum and Deficit Irrigation. Agric. Water Manag. 2011, 98, 759–774. [Google Scholar] [CrossRef]
- Rostamza, M.; Chaichi, M.; Jahansouz, M.; Alimadadi, A. Forage Quality, Water Use and Nitrigen Utilization Efficiencies of Pearl Millet (Pennisetum americanum L.) Grown Under Different Soil Moisture and Nitrogen Levels. Agric. Water Manag. 2011, 98, 1607–1614. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit Irrigation as an on-farm Strategy to Maximize Crop Water Productivity in Dry Areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.R.; Singh, D.P. Agronomic and physiological responses of sorghum, maize, pearl millet, to irrigation. Field Crops Res. 1995, 42, 57–67. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing Soils to Achieve Greater Water Use Efficiency: A review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Payne, W.A. Optimizing crop water use in sparse stands of pearl millet. Agron. J. 2000, 92, 808–814. [Google Scholar] [CrossRef]
- Zhang, Z.; Whish, J.P.M.; Bell, L.W.; Nan, Z. Forage Production, Quality and Water-Use-Efficiency of Four Warm-Season Annual Crops at Three Sowing Times in the Loess Plateau Region of China. Eur. J. Agron. 2017, 84, 84–94. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F.; Benjamin, J.G. Forage response to water use for dryland corn, millet, and triticale in the Central Great Plains. Agron. J. 2006, 98, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Unger, P.W. Alternative and opportunity dryland crops and related soil conditions in the Southern Great Plains. Agron. J. 2001, 93, 216–226. [Google Scholar] [CrossRef]
- Web Soil Survey. 2019. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- Allen, R.G. REF-ET, Reference Evapotranspiration Calculator, Version 4.1; Research and Extension Center, University of Idaho: Kimberly, ID, USA, 2016. [Google Scholar]
- Ritchie, J.T.; Alagarswamy, G. Simulation of sorghum and pearl millet phenology. In Modeling the Growth and Development of Sorghum and Pearl Millet; Virmani, S.M., Tandon, H.L.S., Alagarswamy, G., Eds.; Research Bulletin No. 12; ICRISAT: Patancheru, Andhra Pradesh, India, 1989. [Google Scholar]
- Olsen, J.E.; Hansen, P.K.; Berntsen, J.; Christensen, S. Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Res. 2004, 89, 263–280. [Google Scholar] [CrossRef]
- Blaser, B.C.; Singer, J.W.; Gibson, L.R. Winter cereal canopy effect on cereal and interseeded legume productivity. Agron. J. 2011, 103, 1080–1185. [Google Scholar] [CrossRef]
- Stephenson, R.J.; Posler, G.L. Forage yield and regrowth of pearl millet. Trans. Kans. Acad. Sci. 1984, 87, 91–97. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F.; Benjamin, J.G. Evaluating decision rules for dryland rotation crop selection. Field Crops Res. 2011, 120, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Paris, P.; Di Matteo, G.; Tarchi, M.; Tosi, L.; Spaccino, L.; Lauteri, M. Precision Subsurface Drip Irrigation Increases Yield While Sustaining Water-Use Efficiency in Mediterranean Poplar Bioenergy Plantations. For. Ecol. Manag. 2018, 409, 749–756. [Google Scholar] [CrossRef]
- Bouchard, A.; Vanasse, A.; Seguin, P.; Belanger, G. Yield and Composition of Sweet Pearl Millet as Affected by Row Spacing and Seeding Rate. Agron. J. 2011, 103, 995–1001. [Google Scholar] [CrossRef]
- Musick, J.T.; Jones, O.R.; Stewart, B.A.; Dusek, D.A. Water-yield relationships for irrigated and dryland wheat in the U.S. Southern Plains. Agron. J. 1994, 86, 980–986. [Google Scholar] [CrossRef]
- Ehlers, W.; Goss, M. Water Dynamics and Plant Production, 2nd ed.; CAB International: Boston, MA, USA, 2016. [Google Scholar]
- Myers, R.J.K.; Foale, M.A. Row spacing and population density in grain sorghum—A simple analysis. Field Crops Res. 1981, 4, 147–154. [Google Scholar] [CrossRef]
- Mohler, C.L. Enhancing the Competitive Ability of Crops. In Ecological Management of Agricultural Weeds; Liebman, M., Mohler, C.L., Staver, C.P., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 269–305. [Google Scholar]
- Nagaz, K.; Toumi, I.; Mahjoub, I.; Masmoudi, M.M.; Mechlia, N.B. Yield and Water-Use Efficiency of Pearl Millet (Pennisetum glaucum (L.) R. Br.) Under Deficit Irrigation with Saline Water in Arid Conditions of Southern Tunisia. Res. J. Agron. 2009, 3, 9–17. [Google Scholar]
- Nielsen, D.C.; Vigil, M.F. Defining a Dryland Grain Sorghum Production Function for the Central Great Plains. Agron. J. 2017, 109, 1582–1590. [Google Scholar] [CrossRef]
- Hao, B.; Xue, Q.; Bean, B.W.; Rooney, W.L.; Becker, J.D. Biomass Production, Water and Nitrogen Use Efficiency in Photoperiod-Sensitive Sorghum in the Texas High Plains. Biomass Bioenergy 2014, 62, 108–116. [Google Scholar] [CrossRef]
- Ritchie, J.T. Efficient water use in crop production: Discussion on the generality of relationships between biomass production and evapotranspiration. In Limitations to Efficient Water Use in Crop Production; Tanner, H.M., Jordan, W.R., Sinclair, T.R., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1983; pp. 29–44. [Google Scholar]
- Sinclair, T.R.; Weiss, A. Principles of Ecology in Plant Production, 2nd ed.; CABI: Cambridge, MA, USA, 2010. [Google Scholar]
- Hardwick, S.R.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The Relationship between Leaf Area Index and Microclimate in Tropical Forest and Oil Palm Plantation: Forest Disturbance Drives Changes in Microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Effective Use of Water (EWU) and not Water-Use Efficiency (WUE) is the Target of Crop Yield Improvement under Drought Stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
Reference | Location | Soil Type a | Crop b | Treatment c | Tillage | Row Spacing (cm) | Water Source d | WU (mm) | WUE (kg ha−1 mm−1) | Comments |
---|---|---|---|---|---|---|---|---|---|---|
[15] | Texas, USA | CL | Pearl, F | Irr levels, cultivars | Disk | 100 | Subdrip | 193–480 | 87–92 | Max WUE in limited Irr only 1 yr. |
[8] | Texas, USA | CL | Pearl, F | Harvest intervals | Rotary till | 19 | Surfdrip | 594 | 16.2 | WUE not different across harvest intervals |
[12] | Tanzania | Snd | Pearl, G | Cultivation, micro-dosing | various | na | Rf | 481 | 1.0–4.0 | Max WUE in tide-ridges with micro-dose |
[25] | China | SndL | Foxtail, Japanese, G | Species, sowing dates | Rotary till | 42 | Rf | 356 | 10.2–22.8 | Max WUE in early sowing |
[17] | Niger | Snd | Pearl, G | Manure, micro-dosing | na | 100 | Rf | 582 | 4.9–12.8 | Manure and fertilizer increased WUE |
[11] | India | SndL | Pearl, G | Planting arrangement | na | 100 | Rf | 263 | 5.8–7.7 | Tide-ridge recommended |
[16] | Jordan | CL | Pearl, F | Species, irr levels | Disk | 50 | Surfdrip | 325–516 | 21.3 | Deficit increased millet WUE |
[10] | Saudi Arabia | SndL | Pearl, F | Irr type | na | 20 | Sprinkler, Surfdrip, subdrip | 100–1300 | 8.4–13.4 | Max WUE in subdrip |
[19] | Australia | CL | Pearl, F | Irr levels | na | na | Sprinkler | 496 | 22.7 | Forage species, high WUE |
[20] | Iran | CL | Pearl, F | Irr levels, N levels | na | 60 | Flood | 321–755 | 28.4–41 | Max WUE in deficit with N applied |
[18] | Niger | na | Pearl, G | Animal integrated cropping | na | na | Rf | 372–393 | 0.9–6.2 | Max WUE with animal integrated cropping |
[26] | Colorado, USA | SltL | Proso, F | Cropping systems | No-till | na | Rf | 100–250 | 3.0–22.0 | WUE improved in forage-based systems |
[14] | Nebraska, USA | SltL | Pearl, G | Irr scheduling | No-till | 76 | Flood | 353 | 13.4–28.5 | Sorghum had higher WUE than millet |
[27] | Texas, USA | CL | Pearl, G/F | Cropping systems | No-till | 25 | Rf | 268 | 4–31.0 | Forage crops improved system WUE |
[13] | Niger | Snd | Pearl, G | Population, varieties | na | 100 | Rf | 366 | 7.6–9.7 | Max WUE in high populations with nutrients applied |
[22] | India | SndL | Pearl, F | Irr scheduling, cultivars | na | 30 | Flood | 223–568 | 13.8–17.9 | Max WUE under water stress |
Water Content (kPa) b | |||||
---|---|---|---|---|---|
Depth | ρ bc | −33 | −1500 | Plant Available Water | |
cm | g cm−3 | % by Volume | cm cm−3 | cm | |
0–15 | 1.54 | 34.8 | 23.5 | 0.13 | |
15–30 | 1.49 | 35.3 | 24.5 | 0.16 | |
30–60 | 1.46 | 35.6 | 25 | 0.17 | |
60–90 | 1.45 | 35.2 | 24.3 | 0.16 | |
Mean | 1.49 | 35.23 | 24.33 | 0.16 | |
Profile | 13.95 |
Month | Avg. b Max Daily Temp. | Precipitation | Heat Units | ||||||
---|---|---|---|---|---|---|---|---|---|
°C | mm | GDD | |||||||
2016 | 2017 | Avg. | 2016 | 2017 | Avg. | 2016 | 2017 | Avg. | |
June | 33 | 32 | 30 | 57 | 103 | 80 | 437 | 411 | 405 |
July | 36 | 32 | 33 | 61 | 79 | 72 | 528 | 478 | 486 |
August | 31 | 28 | 31 | 113 | 127 | 74 | 440 | 389 | 461 |
September | 29 | 28 | 15 | 49 | 362 | 324 | |||
Total | 246 | 309 | 275 | 1767 | 1279 | 1676 | |||
Percent of normal | 89% | 137% c | 105% | 94% |
2016 | 2017 | |||||
---|---|---|---|---|---|---|
High | Moderate | Limited | High | Moderate | Limited | |
June | 72 | 72 | 72 | 214 | 171 | 132 |
July | 66 | 43 | 142 | 71 | ||
August | 82 | 42 | ||||
September | ||||||
Total | 220 | 157 | 72 | 356 | 242 | 132 |
2016 a | 2017 | |||||||
---|---|---|---|---|---|---|---|---|
mm | ||||||||
High | Moderate | Limited | ETo b | High | Moderate | Limited | ETo | |
Total | 437 | 374 | 289 | 772 | 665 | 551 | 441 | 902 |
Percent of total as irrigation | 50% | 41% | 24% | 53% | 43% | 29% | ||
Total water as percent of ETo | 56% | 48% | 37% | 73% | 61% | 48% |
2016 | |||
Treatment a | DM | WU | WUE |
I | 0.001 | <0.0001 | ns |
R | ns | ns | ns |
I × R | ns | ns | ns |
T | 0.0001 | ns | <0.0001 |
I × T | ns | ns | ns |
R × T | ns | ns | ns |
I × R × T | ns | ns | ns |
2017 | |||
DM | WU | WUE | |
I | 0.0097 | <0.0001 | ns |
R | ns | ns | ns |
I × R | ns | ns | ns |
T | 0.0064 | ns | 0.0095 |
I × T | ns | ns | ns |
R × T | ns | ns | ns |
I × R × T | ns | ns | ns |
Treatment | DM | |
---|---|---|
kg ha−1 | ||
2016 | 2017 | |
Irrigation | ||
High | 710a a | 324a |
Moderate | 561b | 363a |
Limited | 484b | 297a |
SE | 37.8 | 44.7 |
Row Spacing | ||
19 cm | 576a | 218b |
76 cm | 594a | 438a |
SE | 30.9 | 36.5 |
Tillage | ||
No-till | 792a | 318a |
Till | 379b | 338a |
SE | 30.9 | 36.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crookston, B.; Blaser, B.; Darapuneni, M.; Rhoades, M. Pearl Millet Forage Water Use Efficiency. Agronomy 2020, 10, 1672. https://doi.org/10.3390/agronomy10111672
Crookston B, Blaser B, Darapuneni M, Rhoades M. Pearl Millet Forage Water Use Efficiency. Agronomy. 2020; 10(11):1672. https://doi.org/10.3390/agronomy10111672
Chicago/Turabian StyleCrookston, Bradley, Brock Blaser, Murali Darapuneni, and Marty Rhoades. 2020. "Pearl Millet Forage Water Use Efficiency" Agronomy 10, no. 11: 1672. https://doi.org/10.3390/agronomy10111672
APA StyleCrookston, B., Blaser, B., Darapuneni, M., & Rhoades, M. (2020). Pearl Millet Forage Water Use Efficiency. Agronomy, 10(11), 1672. https://doi.org/10.3390/agronomy10111672