Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Determination of Fresh and Dry Weight, Water Content, Leaf Area
2.3. Determination of the Chlorophyll and Carotenoids Content
2.4. Determination of Reactive Oxygen Species and Malondialdehyde
2.5. Statistical Analysis
3. Results
3.1. Plant Growth, Water Content, and Leaf Area
3.2. Chlorophyll and Carotenoids Content
3.3. Oxidative Status and Membrane Damage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alizadeh, V.; Shokri, V.; Soltani, A.; Yousefi, M.A. Effects of Climate Change and Drought-Stress on Plant Physiology. Int. J. Adv. Biol. Biom. Res 2015, 3, 38–42. [Google Scholar]
- Bolat, I.; Dikilitas, M.; Ikinci, A.; Ercisli, S.; Tonkaz, T. Morphological, physiological, biochemical characteristics and bud success responses of myrobolan 29 c plum rootstock subjected to water stress. Can. J. Plant Sci. 2016, 96, 485–493. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Ashraf, M. Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. J. Plant Nutr. 2010, 33, 1276–1286. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and developmental responses of crop plants under drought stress: A review. Zemdirb. -Agric. 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Mibei, E.K.; Ambuko, J.; Giovannoni, J.J.; Onyango, A.N.; Owino, W.O. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci. Nutr. 2016, 5, 113–122. [Google Scholar] [CrossRef]
- Khayatnezhad, M.; Gholamin, R. The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). Afr. J. Microbiol. Res. 2012, 6, 2844–2848. [Google Scholar] [CrossRef]
- Li, R.; Guo, P.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agric. Sci. China 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Meher; Shivakrishna, P.; Ashok Reddy, K.; Manohar Rao, D. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J. Biol. Sci. 2018, 25, 285–289. [Google Scholar] [CrossRef]
- Young, A.; Lowe, G. Carotenoids—Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Li, G.; Sun, H.; Ma, L.; Guo, Y.; Zhao, Z.; Gao, H.; Mei, L. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol. Open 2018, 7, bio035279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Wahid, A.; Lee, D.-J.; Cheema, S.A.; Aziz, T. DROUGHT STRESS: Comparative Time Course Action of the Foliar Applied Glycinebetaine, Salicylic Acid, Nitrous Oxide, Brassinosteroids and Spermine in Improving Drought Resistance of Rice: Improving rice drought tolerance. J. Agron. Crop Sci. 2010, 196, 336–345. [Google Scholar] [CrossRef]
- Bhadra, S.; Roy, B.; Ghimiray, T.S. Polyethyleneglycol mediated rapid in vitro screening of rice (Oryza sativa L.) genotypes for drought tolerance. Ind. Jrnl. Gen. Plnt. Bree. 2017, 78, 142. [Google Scholar] [CrossRef]
- Sakthivelu, G.; Akitha Devi, M.K.; Giridhar, P.; Rajasekaran, T.; Nedev, T.; Kosturkova, G. Drought-induced alterations in growth, osmotic and in vitro regeneration of soybean cultivars. Genet. Appl. Plant Physiol. 2008, 34, 103–112. [Google Scholar]
- Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. IJMS 2018, 19, 4089. [Google Scholar] [CrossRef] [Green Version]
- Kautz, B.; Noga, G.; Hunsche, M. PEG and drought cause distinct changes in biochemical, physiological and morphological parameters of apple seedlings. Acta Physiol. Plant. 2015, 37, 162. [Google Scholar] [CrossRef]
- Říha, J. České Ovoce–díl III. Jablka; České nakladatelství: Praha, Czech Republic, 1919. [Google Scholar]
- Boček, S. Ovocné Dřeviny v Krajině: Pilotní vZdělávací Program, Hostětín 2007/8: Sborník Přednášek a Seminárních Prací; ZO ČSOP Veronica: Brno, Czech Republic, 2008; ISBN 978-80-904109-2-3. [Google Scholar]
- Richter, M. Malý Obrazový Atlas Odrůd Ovoce. 3; TG tisk: Lanškroun, Czech Republic, 2004; ISBN 978-80-903487-2-1. [Google Scholar]
- Nove Odrudy Ovoce = New Cultivars of Fruit; Vyzkumny a slechtitelsky ustav ovocnarsky Holovousy: Holovousy, Czech Republic, 2007; ISBN 978-80-87030-04-2.
- Kutina, J. Pomologický Atlas 1; Brázda: Praha, Czech Republic, 1991; ISBN 80-209-0089-6. [Google Scholar]
- Blažek, J. Odrůda jabloně Rubinstep. Vědecké Práce Ovocnářské 2001, 17, 163–165. [Google Scholar]
- Kutina, J.; Holeček, S. Pomologický Atlas 2; Brázda: Praha, Czech Republic, 1992; ISBN 978-80-209-0192-7. [Google Scholar]
- Lane, W.D.; Schmid, H. Lapins and Sunburst sweet cherry. Can. J. Plant Sci. 1984, 64, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Blažková, J. Pěstování Třešní na Slabě Rostoucích Podnožích; Výzkumný a šlechtitelský Ústav Ovocnářský Holovousy: Holovousy, Czech Republic, 2005; ISBN 978-80-902636-8-0. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- ImageJ Home Page. Available online: http://rsbweb.nih.gov/ij (accessed on 30 October 2020).
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total Carotenoids, using various solvents with spectrophotometers of different resolutions. J. Plant. Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Ducaiova, Z.; Sajko, M.; Mihalicova, S.; Repcak, M. Dynamics of accumulation of coumarin-related compounds in leaves of MatriCaria chamomilla after methyl jasmonate elicitation. Plant Growth Regul. 2016, 79, 81–94. [Google Scholar] [CrossRef]
- Tardieu, F. Plant response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit. Front. Plant Physiol. 2013, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Hojati, S.; Eshghi, S.; Moghaddam, R.N.; Jandoust, S. Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Sci. Hortic. 2012, 137, 95–97. [Google Scholar] [CrossRef]
- Turhan, H.; Baser, I. In vitro and in vivo water stress in sunflower. Helia 2004, 27, 227–236. [Google Scholar] [CrossRef]
- Tsago, Y.; Andargie, M.; Takele, A. In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Sci. Today 2014, 1, 62–68. [Google Scholar] [CrossRef]
- Abouzaid, E.; El-Sayed, E.S.N.; Mohamed, E.S.A.; Youseff, M. Molecular Analysis of Drought Tolerance in Guava Based on In Vitro PEG Evaluation. Trop. Plant Biol. 2016, 9, 73–81. [Google Scholar] [CrossRef]
- Piwowarczyk, B.; Kamińska, I.; Rybiński, W. Influence of PEG Generated Osmotic Stress on Shoot Regeneration and Some Biochemical Parameters in Lathyrus Culture. Czech J. Genet. Plant Breed. 2014, 50, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liang, D.; Li, C.; Hao, Y.; Ma, F.; Shu, F. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol. Bioch. 2012, 51, 81–89. [Google Scholar] [CrossRef]
- Gikloo, S.T.; Elhami, B. Physiological and morphological responsesof two almond cultivars to drought stress and cycocel. Int. Res. J. Appl. Bas. Sci. 2012, 3, 1000–1004. [Google Scholar]
- Sivritepe, N.; Erturk, U.; Yerlikaya, C.; Turkan, I.; Bor, M.; Ozdemir, F. Response of the cherry rootstock to water stress induced in vitro. Biol. Plant. 2008, 52, 573–576. [Google Scholar] [CrossRef]
- Jiménez, S.; Dridi, J.; Gutiérrez, D.; Moret, D.; Irigoyen, J.J.; Moreno, M.A.; Gogorcena, Y. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol. 2013, 33, 1061–1075. [Google Scholar] [CrossRef]
- Šircelj, H.; Tausz, M.; Grill, D.; Batič, F. Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Sci. Hortic. 2007, 113, 362–369. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Tang, G.; Wang, X.; Liu, F.; Zhao, D. Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescnce of Juglans rootstocks. Sci. Hortic. 2019, 250, 230–235. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pérez, M.E.; Lemaire, S.D.; Crespo, J.L. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 2012, 160, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.-P.; Li, Z.; Bai, D.-F.; Qi, X.-J.; Chen, J.-Y.; Wei, C.-G.; Lin, M.-M.; Fang, J.-B. In Vitro Variation of Drought Tolerance in Five Actinidia Species. J. Am. Soc. Hortic. Sci. 2018, 143, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Xue, H.; Lu, X.; Zhang, B.; Wang, F.; Ma, Y.; Zhang, Z. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 2015, 29, 1773–1780. [Google Scholar] [CrossRef]
Cultivar (Apple) | Main Feature in Relation to Abiotic Stress | Cultivar (Cherry) | Main Feature in Relation to Abiotic Stress |
---|---|---|---|
Malinové holovouské | Low drought resistance [18]. Sufficient frost resistance [19]. | Regina | High resistance to rain-induced splitting [20]. |
Fragrance | Resistant to winter and spring frosts [21]. | Napoleonova | Low resistance to rain-induced splitting [20]. Tolerant to drought [22]. |
Rubinstep | Resistant to winter and spring frosts [23]. | Kaštánka | High resistance to rain-induced splitting [20]. |
Idared | Sensitive to winter frosts [24]. | Sunburst | Very resistant to frosts. High resistance to rain-induced splitting [25]. |
Car Alexander | Very low drought resistance. High frost resistance [19]. | P-HL-C | Resistant to winter frosts [26]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalikova, Z.; Jiroutova, P.; Toman, J.; Dobrovolna, D.; Drbohlavova, L. Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress. Agronomy 2020, 10, 1689. https://doi.org/10.3390/agronomy10111689
Kovalikova Z, Jiroutova P, Toman J, Dobrovolna D, Drbohlavova L. Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress. Agronomy. 2020; 10(11):1689. https://doi.org/10.3390/agronomy10111689
Chicago/Turabian StyleKovalikova, Zuzana, Petra Jiroutova, Jakub Toman, Dominika Dobrovolna, and Lenka Drbohlavova. 2020. "Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress" Agronomy 10, no. 11: 1689. https://doi.org/10.3390/agronomy10111689
APA StyleKovalikova, Z., Jiroutova, P., Toman, J., Dobrovolna, D., & Drbohlavova, L. (2020). Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress. Agronomy, 10(11), 1689. https://doi.org/10.3390/agronomy10111689