Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site
Abstract
:1. Introduction
- Effect on the soil nematode community composition of converting soil from mixed plant cover presented by Medicago sativa L., Bromus tectorum L., Panicum virgatum L., to the production of monoculture represented by Miscanthus.
- Effect on the soil nematode abundance, diversity, trophic structure, and maturity of tillage and two phosphorous amendments (organic and inorganic) to establish Miscanthus on Pb contaminated aged soil.
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling, Nematode Isolation, Identification and Calculation of Community Structure Indicators
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Miscanthus. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press, Elsevier: Cambridge, MA, USA, 2018; pp. 35–59. [Google Scholar]
- Roozeboom, K.L.; Wang, D.; McGowan, A.R.; Propheter, J.L.; Staggenborg, S.A.; Rice, C.W. Long-term Biomass and Potential Ethanol Yields of Annual and Perennial Biofuel Crops. Agron. J. 2019, 111, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Nsanganwimana, F.; Pourrut, B.; Mench, M.; Douay, F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manag. 2014, 143, 123–134. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Dražić, G.; Milovanović, J.; Stefanović, S.; Petrić, I. Potential of Miscanthus × giganteus for Heavy Metals Removing from Industrial Deposol. Acta Reg. Environ. 2018, 14, 56–58. [Google Scholar] [CrossRef]
- Wanat, N.; Austruy, A.; Joussein, E.; Soubrand, M.; Hitmi, A.; Gauthier-Moussard, C.; Lenain, J.F.; Vernay, P.; Munch, J.C.; Pichon, M. Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. J. Geochem. Explor. 2013, 126, 78–84. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Shapoval, P.; Zgorelec, Ž.; Stefanovska, T.; Zhukov, O. Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 31446–31457. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Pidlisnyuk, V.; Abit, K.; Nurzhanov, C.; Kenessov, B.; Stefanovska, T.; Erickson, L. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: A case of military and mining sites. Environ. Sci. Pollut. Res. 2019, 26, 13320–13333. [Google Scholar] [CrossRef]
- Alasmary, Z. Laboratory-to Field-Scale Investigations to Evaluate Phosphate Amendments and Miscanthus for Phytostabilization of Lead-Contaminated Military Sites. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- Sochová, I.; Hofman, J.; Holoubek, I. Using nematodes in soil ecotoxicology. Environ. Int. 2006, 32, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Barker, K.R.; Koenning, S.R. Developing sustainable systems for nematode management. Annu. Rev. Phytopathol. 1998, 36, 165–205. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, S.; Minoshima, H.; Ferris, H.; Jackson, L.E. Linking soil properties and nematode community composition: Effects of soil management on soil food webs. Nematology 2006, 8, 703–715. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Ferris, H. Suppressive service of the soil food web: Effects of environmental management. Agric. Ecosyst. Environ. 2007, 119, 75–87. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Urzelai, A.; Hernández, A.J.; Pastor, J. Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Sci. Total Environ. 2000, 247, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar]
- Ferris, H.; Matute, M.M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil Ecol. 2003, 23, 93–110. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Briar, S.S.; Grewal, P.S.; Somasekhar, N.; Stinner, D.; Miller, S.A. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Appl. Soil Ecol. 2007, 37, 256–266. [Google Scholar] [CrossRef]
- Ritz, K.; Black, H.I.J.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- DuPont, S.T.; Ferris, H.; Van Horn, M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl. Soil Ecol. 2009, 41, 157–167. [Google Scholar] [CrossRef]
- Neher, D.A.; Olson, R.K. Nematode communities in soils of four farm cropping management systems. Pedobiologia 1999, 43, 430–438. [Google Scholar]
- Ferris, H.; Bongers, T.; De Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. Eur. J. Soil Biol. 2010, 46, 230–236. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Papajová, I.; Sasanelli, N.; Radicci, V.; Renčo, M. Suppression of root-knot nematodes in potting mixes amended with different composted biowastes. Helminthologia 2011, 48, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Renčo, M.; Sasanelli, N.; D’Addabbo, T.; Papajová, I. Soil nematode community changes associated with compost amendments. Nematology 2010, 12, 681–692. [Google Scholar] [CrossRef]
- Forge, T.A.; Bittman, S.; Kowalenko, C.G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 1751–1762. [Google Scholar] [CrossRef]
- Leroy, B.L.M.M.; Bommele, L.; Reheul, D.; Moens, M.; De Neve, S. The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: Effects on soil fauna and yield. Eur. J. Soil Biol. 2007, 43, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Granato, T.C.; Cox, A.E.; Pietz, R.I.; Carlson, C.R.; Abedin, Z. Soil Carbon Sequestration Resulting from Long-Term Application of Biosolids for Land Reclamation. J. Environ. Qual. 2009, 38, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Torri, S.I.; Corrêa, R.S.; Renella, G. Soil Carbon Sequestration Resulting from Biosolids Application. Appl. Environ. Soil Sci. 2014, 2014, 821768. [Google Scholar] [CrossRef] [Green Version]
- Torri, S.; Corrêa, R.S.; Renella, G.; Vadecantos, A.; Perelomov, L. Biosolids Soil Application: Agronomic and Environmental Implications 2014. Appl. Environ. Soil Sci. 2015, 2015, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Mennan, S.; Melakeberhan, H. Effects of biosolid amendment on populations of Meloidogyne hapla and soils with different textures and pHs. Bioresour. Technol. 2010, 101, 7158–7164. [Google Scholar] [CrossRef]
- Zasada, I.; Rogers, S.; Sardanelli, S. Application of alkaline-stabilised biosolids for Meloidogyne incognita suppression in microplots. Nematology 2007, 9, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Zasada, I.A.; Avendano, F.; Li, Y.C.; Logan, T.; Melakeberhan, H.; Koenning, S.R.; Tylka, G.L. Potential of an Alkaline-Stabilized Biosolid to Manage Nematodes: Case Studies on Soybean Cyst and Root-Knot Nematodes. Plant Dis. 2008, 92, 4–13. [Google Scholar] [CrossRef]
- Yeates, G.W.; Speir, T.W.; Taylor, M.D.; Clucas, L.; Schaik, A.P. Nematode responses to biosolids incorporation in five soil types. Biol. Fertil. Soils 2006, 42, 550–555. [Google Scholar] [CrossRef]
- Sarathchandra, S.U.; Ghani, A.; Yeates, G.W.; Burch, G.; Cox, N.R. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol. Biochem. 2001, 33, 953–964. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.; Hu, F.; Ran, W.; Shen, Q.; Li, H.; Whalen, J.K. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agric. Ecosyst. Environ. 2016, 232, 199–207. [Google Scholar] [CrossRef]
- Todd, T.C. Effects of management practices on nematode community structure in tallgrass prairie. Appl. Soil Ecol. 1996, 3, 235–246. [Google Scholar] [CrossRef]
- Rovira, A.D.; Simon, A. Growth, nutrition and yield of wheat in calcareous sandy loams of South Australia: Effects of soil fumigation, fungicide, nematicide and nitrogen fertilizers. Soil Biol. Biochem. 1985, 17, 279–284. [Google Scholar] [CrossRef]
- Coyne, D.L.; Sahrawat, K.L.; Plowright, R.A. The influence of mineral fertilizer application and plant nutrition on plant-parasitic nematodes in upland and lowland rice in Côte d’Ivoire and its implications in long term agricultural research trials. Exp. Agric. 2004, 40, 245–256. [Google Scholar] [CrossRef]
- Emery, S.M.; Reid, M.L.; Bell-Dereske, L.; Gross, K.L. Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization. GCB Bioenergy 2017, 9, 1644–1656. [Google Scholar] [CrossRef] [Green Version]
- Yeates, G.W.; Bongers, T. Nematode diversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 113–135. [Google Scholar] [CrossRef]
- Zhong, S.; Zeng, H.; Jin, Z. Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biol. Biochem. 2017, 107, 234–243. [Google Scholar] [CrossRef]
- Treonis, A.M.; Austin, E.E.; Buyer, J.S.; Maul, J.E.; Spicer, L.; Zasada, I.A. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol. 2010, 46, 103–110. [Google Scholar] [CrossRef]
- De Goede, R.G.M.; Georgieva, S.S.; Verschoor, B.C.; Kamerman, J.W. Changes in nematode community structure in a primary succession of blown-out areas in a drift sand landscape. Fundam. Appl. Nematol. 1993, 16, 501–513. [Google Scholar]
- Darby, B.J.; Todd, T.C.; Herman, M.A. High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure. Mol. Ecol. 2013, 22, 5456–5471. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Neher, D.A. Soil nematode genera that predict specific types of disturbance. Appl. Soil Ecol. 2013, 64, 135–141. [Google Scholar] [CrossRef]
- Wang, K.H.; McSorley, R.; Marshall, A.; Gallaher, R.N. Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Appl. Soil Ecol. 2006, 31, 186–198. [Google Scholar] [CrossRef]
- Okada, H.; Harada, H.; Kadota, I. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol. Biochem. 2005, 37, 1113–1120. [Google Scholar] [CrossRef]
- Lenz, R.; Eisenbeis, G. Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biol. Fertil. Soils 2000, 31, 237–244. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, W.; Shen, J.; Zhou, L.; Xia, H.; Shu, W.; Ferris, H.; Fu, S. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 2008, 40, 2040–2046. [Google Scholar] [CrossRef]
- Park, B.Y.; Lee, J.K.; Ro, H.M.; Kim, Y.H. Short-term effects of low-level heavy metal contamination on soil health analyzed by nematode community structure. Plant Pathol. J. 2016, 32, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Šalamún, P.; Renčo, M.; Kucanová, E.; Brázová, T.; Papajová, I.; Miklisová, D.; Hanzelová, V. Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology 2012, 21, 2319–2330. [Google Scholar] [CrossRef]
- Georgieva, S.S.; McGrath, S.P.; Hooper, D.J.; Chambers, B.S. Nematode communities under stress: The long-term effects of heavy metals in soil treated with sewage sludge. Appl. Soil Ecol. 2002, 20, 27–42. [Google Scholar] [CrossRef]
- Bakonyi, G.; Nagy, P.; Kádár, I. Long-term effects of heavy metals and microelements on nematode assemblage. Toxicol. Lett. 2003, 140, 391–401. [Google Scholar] [CrossRef]
- Millward, R.N.; Grant, A. Pollution-induced tolerance to copper of nematode communities in the severely contaminated restronguet creek and adjacent estuaries, Cornwall, United Kingdom. Environ. Toxicol. Chem. 2000, 19, 454–461. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Fernández, C.; Escuer, M.; Campos-Herrera, R.; Beltrán Rodríguez, M.E.; Carbonell, G.; Rodríguez Martín, J.A. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ. Pollut. 2016, 213, 184–194. [Google Scholar] [CrossRef]
- Ekschmitt, K.; Korthals, G.W. Nematodes as Sentinels of Heavy Metals and Organic Toxicants in the Soil. J. Nematol. 2006, 38, 13–19. [Google Scholar]
- US EPA. SW-846 Test Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils (accessed on 19 September 2020).
- Althoff, P.S.; Todd, T.C.; Thien, S.J.; Callaham, M.A. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie. Appl. Soil Ecol. 2009, 43, 122–130. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Jenkins, W.R. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Report. 1964, 48, 692. [Google Scholar]
- Tarjan, A.C.; Esser, R.P.; Chang, S.L. An Illustrated Key to Nematodes Found in Fresh Water. J. WPCF 1977, 49, 2318–2337. [Google Scholar]
- Okada, H.; Tsukiboshi, T.; Kadota, I. Mycetophagy in Filenchus misellus (Andrássy, 1958) Lownsbery & Lownsbery, 1985 (Nematoda: Tylenchidae), with notes on its morphology. Nematology 2002, 4, 795–801. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Pielou, E.C. An Introduction to Mathematical Ecology; Wiley-Interscience: New York, NY, USA, 1969. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Markus, J.; McBratney, A.B. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environ. Int. 2001, 27, 399–411. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Chen, J.; Wu, J. Original vegetation type affects soil nematode communities. Appl. Soil Ecol. 2007, 35, 68–78. [Google Scholar] [CrossRef]
- Schorpp, Q.; Schrader, S. Dynamic of nematode communities in energy plant cropping systems. Eur. J. Soil Biol. 2017, 78, 92–101. [Google Scholar] [CrossRef]
- Krashevska, V.; Kudrin, A.A.; Widyastuti, R.; Scheu, S. Changes in Nematode Communities and Functional Diversity With the Conversion of Rainforest Into Rubber and Oil Palm Plantations. Front. Ecol. Evol. 2019, 7, 487. [Google Scholar] [CrossRef] [Green Version]
- Yurkevich, M.G.; Sushchuk, A.A.; Matveeva, E.M.; Kalinkina, D.S. Changes in Soil Nematode Communities during Postagrogenic Transformation of Peat Soils and Vegetation. Eurasian Soil Sci. 2020, 53, 686–695. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, H.; Cui, L.; Wickings, K.; Fu, S.; Wang, C. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 2017, 7, 837. [Google Scholar] [CrossRef] [Green Version]
- Freckman, D.W.; Ettema, C.H. Assessing nematode communities in agroecosystems of varying human intervention. Agric. Ecosyst. Environ. 1993, 45, 239–261. [Google Scholar] [CrossRef]
- Ekschmitt, K.; Bakonyi, G.; Bongers, M.; Bongers, T.; Boström, S.; Dogan, H.; Harrison, A.; Nagy, P.; O’Donnell, A.G.; Papatheodorou, E.M.; et al. Nematode community structure as indicator of soil functioning in European grassland soils. Eur. J. Soil Biol. 2001, 37, 263–268. [Google Scholar] [CrossRef]
- Moura, G.S.; Franzener, G. Biodiversity of nematodes biological indicators of soil quality in the agroecosystems. Arq. Inst. Biol. 2017, 84, e0142015. [Google Scholar] [CrossRef] [Green Version]
- Tomar, V.; Ahmad, W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia 2009, 46, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Kimenju, J.W.; Karanja, N.K.; Mutua, G.K.; Rimberia, B.M.; Wachira, P.M. Nematode community structure as influenced by land use and intensity of cultivation. Trop. Subtrop. Agroecosyst. 2009, 11, 353–360. [Google Scholar]
- Van der Putten, W.H. Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 2003, 84, 2269–2280. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ding, C.; Liu, J.; Zhang, T.; Wang, X. Evident Response of the Soil Nematode Community to Consecutive Peanut Monoculturing. Agron. J. 2015, 107, 195–203. [Google Scholar] [CrossRef]
- Todd, T.C.; Powers, T.O.; Mullin, P.G. Sentinel nematodes of land-use change and restoration in tallgrass prairie. J. Nematol. 2006, 38, 20–27. [Google Scholar]
- Porazinska, D.L.; Duncan, L.W.; McSorley, R.; Graham, J.H. Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices. Appl. Soil Ecol. 1999, 13, 69–86. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Watson, R.N.; Nicholson, K.S. The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems. Plant Soil 1995, 170, 35–43. [Google Scholar] [CrossRef]
- Bulluck, L.R.; Barker, K.R.; Ristaino, J.B. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl. Soil Ecol. 2002, 21, 233–250. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Li, J.; Ke, X.; Wu, L.; Luo, Y.; Christie, P. Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environ. Pollut. 2020, 260, 114017. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, H.; Chen, L.; Yuan, Y.; Fang, H.; Luan, L.; Chen, Y.; Wang, X.; Liu, M.; Li, H.; et al. Nematodes and Microorganisms Interactively Stimulate Soil Organic Carbon Turnover in the Macroaggregates. Front. Microbiol. 2018, 9, 2803. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.P.; Marín-Spiotta, E.; de Graaff, M.A.; Balser, T.C. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol. Biochem. 2014, 77, 292–303. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bodenhausen, N.; Bünemann, E.K.; Brussaard, L.; Geisen, S.; Mäder, P.; Quist, C.W.; Walser, J.; Goede, R.G.M. Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments. Mol. Ecol. 2019, 28, 4987–5005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
# | Vegetation | Treatment | Descriptions of Preparation |
---|---|---|---|
1 | Existing | Control | Existing vegetation, cut to 2 cm from soil surface |
2 | Miscanthus | No-till | Vegetation terminated with glyphosate herbicide, and Miscanthus planted directly into the soil two weeks later |
3 | Miscanthus | Till | Vegetation terminated with glyphosate herbicide two weeks before planting and tilled to 7 to 10 cm deep immediately before planting, no amendments |
4 | Miscanthus | Till + P (Inorganic phosphorus fertilizer) | Vegetation terminated with glyphosate herbicide two weeks before planting and tilled to 7 to 10 cm deep immediately before planting; Triple superphosphate (926 kg/ha, 45% P) incorporated with the tillage event |
5 | Miscanthus | Till + Biosolids (Organic source of phosphorus) | Vegetation terminated with glyphosate herbicide two weeks before planting and tilled to 7 to 10 cm deep immediately before planting; 45 tons/ha biosolids (586 kg/ha P) incorporated with the tillage event |
Treatment | Concentration of Pb (mg/kg) | Biomass Yield (Mg/ha−1) | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
Control | 1093 ± 103 | 3.6 ± 0.5 | 2.0 ± 0.2 | 4.2 ± 0.3 |
M-No-till | 1290 ± 34 | 7.0 ± 1.4 | 9.3 ± 2.1 | 8.0 ± 0.9 |
M-Till | 1396 ± 29 | 9.6 ± 1.0 | 10.8 ± 1.0 | 6.9 ± 0.7 |
M-TSP | 1457 ± 42 | 8.4 ± 0.7 | 9.8 ± 0.6 | 6.9 ± 0.9 |
M-Biosolids | 1103 ± 50 | 13.5 ± 1.0 | 9.9 ± 1.8 | 10.5 ± 1.5 |
LSD 0.05 | 0.002 | <0.001 | <0.001 | <0.001 |
HSD 1 | 262 | 3.8 | 4.9 | 3.9 |
Effect | Wilks-Lambda | F-Ratio | Effect Degrees of Freedom | Error Degrees of Freedom | p-Level | Effect Size (η2) |
---|---|---|---|---|---|---|
Agronomic practices, season, crop yield | ||||||
Intercept | 0.058 | 5.14 | 22 | 7.00 | 0.017 | 0.94 |
Treatment (T) | 0.00004 | 4.08 | 88 | 30.15 | <0.001 | 0.92 |
Sampling time (M) | 0.074 | 3.95 | 22 | 7.00 | 0.034 | 0.93 |
T*M | 0.0013 | 1.48 | 88 | 30.15 | 0.11 | 0.81 |
Yield 2018 | 0.31 | 0.70 | 22 | 7.00 | 0.75 | 0.67 |
Yield 2017 | 0.18 | 1.44 | 22 | 7.00 | 0.32 | 0.82 |
Yield only | ||||||
Intercept | 0.04 | 16.00 | 22 | 16 | <0.001 | 0.96 |
Yield 2018 | 0.18 | 3.42 | 22 | 16 | 0.007 | 0.83 |
Yield 2017 | 0.23 | 2.40 | 22 | 16 | 0.039 | 0.77 |
Taxon | c-p 1 | Agronomic Practices, Season, and Crop Yield 2 | Yield Only | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Planned Comparison 3 | R2 | Year | R2 | |||||||||
T0/T1 | T0/T2 | T1/T2 | T2/T3 | T2/T4 | T3/T4 | M/O | 2018 | 2017 | ||||
Bacterivores | ||||||||||||
Cephalobidae | 2 | – | – | – | – | – | – | – | 0.48 | ↓ | ↓ | 0.39 |
Plectidae | 2 | ↓ | ↓ | – | – | – | – | – | 0.47 | ↓ | ↓ | 0.38 |
Prismatolaimidae | 3 | ↓ | – | ↓ | ↑ | ↑ | – | – | 0.58 | ↓ | – | 0.36 |
Rhabditidae | 1 | – | – | – | – | – | – | ↑ | – | ↓ | – | 0.21 |
Herbivores | ||||||||||||
Aphelenchoididae | 2 | – | – | – | – | – | – | – | – | – | – | – |
Belondiridae | 5 | – | – | – | – | ↓ | ↓ | – | 0.78 | ↑ | – | 0.25 |
Criconematidae | 3 | – | – | – | – | ↓ | ↓ | – | 0.63 | ↑ | – | – |
Hoplolaimidae | 3 | – | – | – | – | ↓ | ↓ | – | 0.85 | ↑ | – | 0.39 |
Meloidogynidae | 3 | – | – | – | – | – | – | – | – | – | – | 0.25 |
Pratylenchidae | 3 | ↓ | ↓ | – | ↓ | ↓ | ↓ | – | 0.60 | ↑ | – | – |
Telotylenchidae | 3 | – | – | – | – | ↓ | ↓ | – | 0.55 | ↑ | – | – |
Xiphinematidae | 5 | – | – | – | – | ↓ | ↓ | ↓ | 0.72 | – | ↓ | 0.23 |
Fungivores | ||||||||||||
Anguinidae | 3 | – | – | – | – | ↑ | ↑ | – | – | – | – | – |
Aphelenchidae | 2 | – | – | – | – | ↑ | ↑ | ↑ | 0.47 | – | – | – |
Diptherophoridae | 3 | – | – | – | – | ↑ | – | – | 0.53 | – | – | – |
Leptonchidae | 4 | – | – | – | – | – | – | – | – | – | – | – |
Tylenchidae | 2 | – | – | – | – | – | – | – | – | – | – | – |
Tylencholaimidae | 4 | ↓ | – | – | – | ↑ | ↑ | ↓ | 0.57 | – | – | – |
Omnivore/predators | ||||||||||||
Aporcelaimidae | 5 | – | – | – | – | – | – | ↓ | 0.66 | – | – | – |
Mononchidae | 4 | – | – | – | – | ↑ | – | ↓ | 0.48 | – | – | – |
Nordiidae | 4 | – | – | – | – | – | ↑ | ↓ | 0.75 | – | – | – |
Qudsianematidae | 4 | – | – | ↓ | – | – | – | ↓ | 0.71 | – | – | – |
Effect | Wilk’s Lambda | F-Ratio | Effect Degrees of Freedom | Error Degrees of Freedom | p-Level | Effect Size (η2) |
---|---|---|---|---|---|---|
Agronomic practices, season, crop yield | ||||||
Intercept | 0.0039 | 658.6 | 8 | 21.00 | <0.001 | 0.99 |
Treatment (T) | 0.091 | 2.25 | 32 | 79.04 | <0.001 | 0.48 |
Sampling time (M) | 0.16 | 14.01 | 8 | 21.00 | <0.001 | 0.84 |
T*M | 0.22 | 1.25 | 32 | 79.04 | 0.21 | 0.34 |
Yield 2018 | 0.92 | 0.13 | 8 | 21.00 | 0.99 | 0.047 |
Yield 2017 | 0.88 | 0.34 | 8 | 21.00 | 0.94 | 0.11 |
Yield only | ||||||
Intercept | 0.0019 | 1926.2 | 8 | 30 | <0.001 | 0.99 |
Yield 2018 | 0.78 | 1.04 | 8 | 30 | 0.45 | 0.19 |
Yield 2017 | 0.81 | 0.90 | 8 | 30 | 0.53 | 0.22 |
Taxon | Agronomic Practices, Season of Sampling, and Crop Yield 1 | Yield only | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Planned Comparison 2 | R2 | Year | R2 | ||||||||
T0/T1 | T0/T2 | T1/T2 | T2/T3 | T2/T4 | T3/T4 | M/O | 2018 | 2017 | |||
Diversity indexes and abundance | |||||||||||
Family richness | – | – | – | – | – | – | ↓ | – | – | – | – |
Shannon diversity | – | ↑ | – | – | – | ↑ | ↓ | 0.59 | – | – | 0.26 |
Pielou diversity | ↑ | ↑ | – | – | ↑ | ↑ | – | 0.72 | ↓ | – | 0.25 |
Maturity index | ↓ | ↓ | – | – | – | – | ↓ | 0.87 | – | – | – |
Total abundance | – | ↓ | – | – | ↓ | ↓ | – | 0.69 | – | – | – |
Trophic groups | |||||||||||
Bacterivores | – | – | – | – | – | – | – | – | ↓ | – | 0.27 |
Fungivores | – | – | – | – | ↑ | ↑ | – | 0.70 | – | – | – |
Herbivores | ↓ | ↓ | – | – | ↓ | ↓ | – | 0.79 | ↓ | – | 0.18 |
Omnivore/predators | – | – | – | – | – | – | ↓ | 0.60 | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmary, Z.; Todd, T.; Hettiarachchi, G.M.; Stefanovska, T.; Pidlisnyuk, V.; Roozeboom, K.; Erickson, L.; Davis, L.; Zhukov, O. Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site. Agronomy 2020, 10, 1727. https://doi.org/10.3390/agronomy10111727
Alasmary Z, Todd T, Hettiarachchi GM, Stefanovska T, Pidlisnyuk V, Roozeboom K, Erickson L, Davis L, Zhukov O. Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site. Agronomy. 2020; 10(11):1727. https://doi.org/10.3390/agronomy10111727
Chicago/Turabian StyleAlasmary, Zafer, Tim Todd, Ganga M. Hettiarachchi, Tatyana Stefanovska, Valentina Pidlisnyuk, Kraig Roozeboom, Larry Erickson, Lawrence Davis, and Olexander Zhukov. 2020. "Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site" Agronomy 10, no. 11: 1727. https://doi.org/10.3390/agronomy10111727
APA StyleAlasmary, Z., Todd, T., Hettiarachchi, G. M., Stefanovska, T., Pidlisnyuk, V., Roozeboom, K., Erickson, L., Davis, L., & Zhukov, O. (2020). Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site. Agronomy, 10(11), 1727. https://doi.org/10.3390/agronomy10111727